CERTIFYING IDEAL MEMBERSHIP TESTS

Daniela Kaufmann

TU Wien, Austria

Dagstuhl Seminar 25231 "Certifying Algorithms for Automated Reasoning" Schloss Dagstuhl, Wadern, Germany

June 2, 2025

Given x - y and $x - 2 \in \mathbb{Q}[x, y]$.

Is f = xy + x - 3y a consequence of these two equations?

1

Given
$$x - y$$
 and $x - 2 \in \mathbb{Q}[x, y]$.

Is f = xy + x - 3y a consequence of these two equations?

$$x - y = 0 \land x - 2 = 0 \implies xy + x - 3y = 0$$
?

1

Given
$$x - y$$
 and $x - 2 \in \mathbb{Q}[x, y]$.

Is f = xy + x - 3y a consequence of these two equations?

$$x - y = 0 \land x - 2 = 0 \implies xy + x - 3y = 0$$
?

Algebraically: $xy + x - 3y \in \langle x - y, x - 2 \rangle$?

Ideal

Ideal. A subset $I \subset R[X]$ is an ideal if it satisfies:

- $0 \in I$
- If $f, g \in I$, then $f + g \in I$.
- $\blacksquare \ \ \text{If} \ f \in I \ \text{and} \ h \in R[X] \ \text{then} \ hf \in I.$

Ideal

Ideal. A subset $I \subset R[X]$ is an ideal if it satisfies:

- $0 \in I$
- If $f, g \in I$, then $f + g \in I$.
- If $f \in I$ and $h \in R[X]$ then $hf \in I$.

Basis.

Let $f_1, \ldots, f_s \in R[X]$. Then we set

$$\langle f_1, \dots, f_s \rangle = \{ h_1 f_1 + \dots + h_s f_s \mid h_1, \dots, h_s \in R[X] \}.$$

 $\langle f_1,\ldots,f_s
angle$ is an ideal and is called the ideal generated by f_1,\ldots,f_s .

Hilbert Basis Theorem. Every ideal has a finite basis.

Interpretation

The ideal $\langle f_1,\ldots,f_s\rangle$ has a nice interpretation in terms of polynomial equations.

Given $f_1, \ldots, f_s \in R[X]$, we get the system of equations

$$f_1=0,$$

:

$$f_s = 0.$$

Interpretation

The ideal $\langle f_1, \dots, f_s \rangle$ has a nice interpretation in terms of polynomial equations.

Given $f_1, \ldots, f_s \in R[X]$, we get the system of equations

$$f_1 = 0,$$

$$\vdots$$

$$f_s = 0.$$

Let $h_1, \ldots, h_s \in R[X]$. We can derive $h_1f_1=0$, $h_2f_2=0$, $h_1f_1+h_2f_2=0$ etc.

Hence we obtain $h_1f_1+\cdots+h_sf_s=0$ as a consequence of our initial system.

Interpretation

The ideal $\langle f_1, \dots, f_s \rangle$ has a nice interpretation in terms of polynomial equations.

Given $f_1, \ldots, f_s \in R[X]$, we get the system of equations

$$f_1 = 0,$$

$$\vdots$$

$$f_s = 0.$$

Let $h_1, \ldots, h_s \in R[X]$. We can derive $h_1 f_1 = 0$, $h_2 f_2 = 0$, $h_1 f_1 + h_2 f_2 = 0$ etc.

Hence we obtain $h_1f_1+\cdots+h_sf_s=0$ as a consequence of our initial system.

Thus, we can think of $\langle f_1, \dots, f_s \rangle$ as consisting of all "polynomial consequences" of the equations $f_1 = f_2 = \dots = f_s = 0$.

Why do we care about ideal membership?

- Solving Polynomial Systems: Check if a polynomial follows from a system of equations
- Automated Theorem Proving: Prove algebraic properties and relationships from given axioms
- Formal Verification: Check whether specification is implied from a model defined by polynomial equations
- Algebraic Geometry: Determine whether a polynomial vanishes on a variety defined by an ideal
- Computer Algebra: Simplify expressions and perform reductions using ideal membership
- **...**

Let $I = \langle x-y, x-2 \rangle \subset \mathbb{Q}[x,y]$. Is the polynomial $f = xy + x - 3y \in I$?

Let
$$I = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y]$$
.
Is the polynomial $f = xy + x - 3y \in I$?

Spoiler: Yes, because

$$xy + x - 3y = (x - y) + y(x - 2)$$

Let
$$I = \langle x-y, x-2 \rangle \subset \mathbb{Q}[x,y].$$

Is the polynomial $f = xy + x - 3y \in I$?

We need some kind of division/reduction algorithm $f \xrightarrow{\{f_1, \dots f_s\}} r$ to check this.

Leading Elements

Let f in $R[x_1,\ldots,x_n]$ be ordered w.r.t to an ordering < such that

$$f = a_1 \tau_1 + a_2 \tau_2 + \ldots + a_m \tau_m.$$

Then we call

- $lt(f) = a_1 \tau_1$ is the **leading term** of f.
- \blacksquare $lm(f) = \tau_1$ is the **leading monomial** of f.
- ightharpoonup $lc(f) = a_1$ is the **leading coefficient** of f.
- $f \operatorname{lt}(f) = a_2 \tau_2 + \ldots + a_m \tau_m$ is the **tail** of f.

Algorithm $f \xrightarrow{\{f_1, \dots f_s\}} r$

```
Input: f_1, \ldots, f_s, f
Output: a_1, \ldots, a_r, r
a_1 := 0; \ldots; a_r := 0; r := 0
p := f
WHILE p \neq 0 DO
        i := 1
        divisionoccurred := false
        WHILE i < s AND divisionoccurred = false DO
                 IF LT(f_i) divides (p) THEN
                          a_i := a_i + LT(p)/LT(f_i)
                          p := p - (LT(p)/LT(f_i)) f_i
                          divisionoccurred:= true
                 ELSE
                          i := i + 1
        IF divisionoccurred = false THEN
                 r := r + LT(p)
                 p := p - LT(p)
```

Let $I=\langle x-y,x-2\rangle\subset \mathbb{Q}[x,y].$ Is the polynomial $f=xy+x-3y\in I$?

Let
$$I=\langle x-y,x-2\rangle\subset \mathbb{Q}[x,y].$$

Is the polynomial $f=xy+x-3y\in I$?

$$xy + x - 3y \xrightarrow{x-y} y^2 - 2y$$

$$xy + x - 3y \xrightarrow{x-2} y - 2$$

Gröbner Basis

Because of Gröbner bases the ideal membership problem is decidable:

- Every ideal $I \subseteq R[X]$ has a Gröbner basis G w.r.t. a fixed monomial order.
- Buchberger's algorithm computes a Gröbner basis $G = \{g_1, \ldots, g_m\}$ for the ideal $\langle f_1, \ldots, f_s \rangle$.
- Given a Gröbner basis G, there is a computable function $\operatorname{red}_G \colon R[X] \to R[X]$ such that $\forall f \in R[X] \colon \operatorname{red}_G(f) = 0 \iff f \in \langle G \rangle$.
- If $f, r \in R[X]$ are such that $red_G(f) = r$, then there exist $h_1, \ldots, h_m \in R[X]$ such that $f r = h_1g_1 + \cdots + h_mg_m$.

Gröbner Bases

Gröbner basis. Fix a monomial order. A finite subset $G = \{g_1, \ldots, g_t\} \subset R[x_1, \ldots, x_n]$ of an ideal $I \subset R[x_1, \ldots, x_n]$ is said to be a Gröbner basis if $\langle \operatorname{lt}(g_1), \ldots, \operatorname{lt}(g_t) \rangle = \langle \operatorname{lt}(I) \rangle$.

Buchberger's Criterion. G is a Gröbner basis of the ideal I if and only if the remainder of the division of $\operatorname{spol}(p,q)$ by G is zero for all pairs $(p,q) \in G \times G$.

S-Polynomials. We define S-polynomials

$$\mathrm{spol}(p,q) \, := \, \frac{\mathrm{lcm}(\mathrm{lt}(p),\mathrm{lt}(q))}{\mathrm{lm}(p)} p - \frac{\mathrm{lcm}(\mathrm{lt}(p),\mathrm{lt}(q))}{\mathrm{lm}(q)} q$$

for all $p, q \in R[x_1, \dots, x_n] \setminus \{0\}$, with lcm the least common multiple.

Computing a Gröbner Basis

Algorithm: Buchberger's Algorithm

```
Input : F = \{f_1, \dots, f_s\}, monomial ordering <
Output: Gröbner basis G = \{q_1, \ldots, q_t\} w.r.t. \langle q_t \rangle, such that \langle q_1, \ldots, q_t \rangle = \langle q_1, \ldots, q_t \rangle
G=F:
C = \{\{g_1, g_2\} \mid g_1, g_2 \in G, g_1 \neq g_2\};
while not all pairs \{a_1, a_2\} \in C are marked do
      choose unmarked pair \{q_1, q_2\};
      mark \{a_1, a_2\}:
                                                                          (\operatorname{spol}(q_1, q_2) \xrightarrow{G} h):
      h = \text{normalform of spol}(q_1, q_2) w.r.t. G
      if h \neq 0 then
            C = C \cup \{\{g, h\} \mid g \in G\};

G = G \cup \{h\};
return G
```

Let $I = \langle f_1, f_2 \rangle = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y]$. Is the polynomial $f = xy + x - 3y \in I$?

Let $I = \langle f_1, f_2 \rangle = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y].$ Is the polynomial $f = xy + x - 3y \in I$?

Let
$$I = \langle f_1, f_2 \rangle = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y]$$
. Is the polynomial $f = xy + x - 3y \in I$?

$$\mathrm{spol}(f_1, f_2) = f_1 - f_2 = y - 2 =: f_3, \text{ so } G = \{f_1, f_2, f_3\}.$$

Let
$$I = \langle f_1, f_2 \rangle = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y].$$

Is the polynomial $f = xy + x - 3y \in I$?

$$\begin{aligned} & \operatorname{spol}(f_1, f_2) = f_1 - f_2 = y - 2 =: f_3, \text{ so } G = \{f_1, f_2, f_3\}. \\ & \operatorname{spol}(f_1, f_3) = y f_1 - x f_3 = 2x - y^2 \xrightarrow{f_2} y^2 - 4 \xrightarrow{f_3} 0 \\ & \operatorname{spol}(f_2, f_3) = y f_2 - x f_3 = 2x - 2y \xrightarrow{f_1} 0 \end{aligned}$$

Let
$$I = \langle f_1, f_2 \rangle = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y].$$

Is the polynomial $f = xy + x - 3y \in I$?

$$spol(f_1, f_2) = f_1 - f_2 = y - 2 =: f_3, \text{ so } G = \{f_1, f_2, f_3\}.$$

$$spol(f_1, f_3) = yf_1 - xf_3 = 2x - y^2 \xrightarrow{f_2} y^2 - 4 \xrightarrow{f_3} 0$$

$$spol(f_2, f_3) = yf_2 - xf_3 = 2x - 2y \xrightarrow{f_1} 0$$

Gröbner
$$(f_1, f_2) = G = \{x - y, x - 2, y - 2\}$$

Let
$$I = \langle f_1, f_2 \rangle = \langle x - y, x - 2 \rangle \subset \mathbb{Q}[x, y].$$

Is the polynomial $f = xy + x - 3y \in I$?

$$\begin{aligned} & \operatorname{spol}(f_1, f_2) = f_1 - f_2 = y - 2 =: f_3, \text{ so } G = \{f_1, f_2, f_3\}. \\ & \operatorname{spol}(f_1, f_3) = y f_1 - x f_3 = 2x - y^2 \xrightarrow{f_2} y^2 - 4 \xrightarrow{f_3} 0 \\ & \operatorname{spol}(f_2, f_3) = y f_2 - x f_3 = 2x - 2y \xrightarrow{f_1} 0 \end{aligned}$$

Gröbner
$$(f_1, f_2) = G = \{x - y, x - 2, y - 2\}$$

$$xy + x - 3y \xrightarrow{x-y} y^2 - 2y \xrightarrow{y-2} 0$$

$$xy + x - 3y \xrightarrow{x-2} y - 2 \xrightarrow{y-2} 0$$

How to derive a certificate for $\mathrm{spol}(f_i,f_j)$ and $f \xrightarrow{\{f_1,\dots,f_s\}} r$?

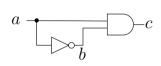
Nullstellensatz Proofs

```
Input: f_1, \ldots, f_s, f
Output: a_1, \ldots, a_s, r
a_1 := 0; \dots; a_r := 0; r := 0
p := f
WHILE p \neq 0 DO
        i := 1
        divisionoccurred := false
        WHILE i < s AND divisionoccurred = false DO
                 IF LT(f_i) divides (p) THEN
                          a_i := a_i + LT(p)/LT(f_i)
                          p := p - (LT(p)/LT(f_i)) f_i
                          divisionoccurred:= true
                 ELSE
                          i := i + 1
        IF divisionoccurred = false THEN
                 r := r + LT(p)
                 p := p - LT(p)
```

- Provides list of co-factors a_1, \ldots, a_s .
- Correctness is checked by expanding linear combination $f = \sum a_i f_i$.
- Condensed proof format.
- Not ideal for debugging.

Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, T., Pudlák, P.: Lower Bounds on Hilbert's Nullstellensatz and Propositional Proofs. In: Proc. London Math. Society. vol. s3-73, pp. 1-26 (1996)

Example



$$G = \{ -b+1-a, b = \neg a -c+ab, c = a \land b = a \land \neg a a^2-a, \} a \in \mathbb{B}$$

$$f = c$$

$$red_G(f) = 0$$

$$f = c = a(-b+1-a) - 1(-c+ab) + 1(a^2 - a)$$

$$P = (a, -1, 1)$$

Polynomial Calculus*

Let $G \subseteq R[X]$ and $f \in R[X]$.

Proof: Sequence $P = (p_1, \dots p_n)$, where each p_k is obtained by one of the two rules:

Addition
$$\frac{p_i-p_j}{p_i+p_j} \qquad \begin{array}{c} p_i,p_j \text{ appearing earlier in the proof} \\ \text{or are contained in } G \end{array}$$

$$p_i \text{ appearing earlier in the proof}$$

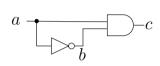
$$\frac{p_i}{qp_i} \qquad \text{or is contained in } G$$

$$\text{and } q \in R[X] \text{ being arbitrary}$$

If $p_n = f$ we have $f \in \langle G \rangle$.

Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: STOC. pp. 174–183. ACM (1996)

Example



$$G = \{ -b+1-a, \quad b = \neg a$$

$$-c+ab, \quad c = a \land b = a \land \neg a$$

$$a^2 - a, \} \quad a \in \mathbb{B}$$

$$f = c$$

$$\operatorname{red}_G(f) = 0$$

$$P = (-ab + a - a^2, -ab, -c, c)$$

Practical Algebraic Calculus

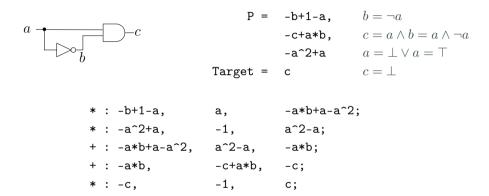
We translate the polynomial calculus into a more concrete proof format:

- For correctness it is important to know how the polynomials in the proof where derived
- Usually known → store this information

Practical Algebraic Calculus (PAC)

allows automated proof checking

Practical Algebraic Calculus - SC² 2018



D. Ritirc, A. Biere, M. Kauers, A Practical Polynomial Calculus for Arithmetic Circuit Verification, SC2-Workshop, 2018.

Proof Checking

A proof **rule** contains four components:

Proof checking:

- Connection property: v, w are given polynomials or conclusions p_i of previous rules
- Inference property: verify correctness of each rule, e.g. p = v + w for o = " + "
- Target check: at least one p_i is equal to f.

Proof Checking Algorithm

```
input
            G sequence of given polynomials
            r_1 \cdots r_k sequence of PAC proof rules
output "incorrect", "correct-proof", or "correct-refutation"
P_0 \leftarrow G
for i \leftarrow 1 \dots k
      let r_i = (o_i, v_i, w_i, p_i)
      case o_i = +
          if v_i \in P_{i-1} \land w_i \in P_{i-1} \land p_i = v_i + w_i then P_i \leftarrow \operatorname{append}(P_{i-1}, p_i)
          else return "incorrect"
      case o_i = *
          if v_i \in P_{i-1} \land p_i = v_i * w_i then P_i \leftarrow \operatorname{append}(P_{i-1}, p_i)
          else return "incorrect"
for i \leftarrow 1 \dots k
      if p_i = f then return "target-checked"
return "correct-proof"
```

Engineering

Use PolynomialReduce for reduction $f \xrightarrow{G} 0$ and deriving co-factors $h_1,...,h_k$ such that $f = h_1g_1 + ... + h_kg_k$.

First we generate a multiplication proof rule for each product $h_i g_i$.

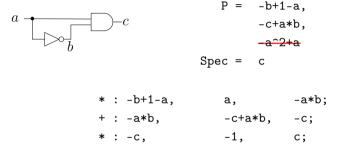
$$*: g_1, h_1, h_1g_1; \qquad \cdots \qquad *: g_k, h_k, h_kg_k;$$

These products are now simply added together as follows:

$$\begin{array}{llll} +: & h_1g_1, & h_2g_2, & h_1g_1+h_2g_2; \\ +: & h_1g_1+h_2g_2, & h_3g_3, & h_1g_1+h_2g_2+h_3g_3; \\ & & \vdots & \\ +: & h_1g_1+\ldots+h_{k-1}g_{k-1}, & h_kg_k, & f; \end{array}$$

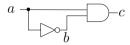
Boolean Variables - FMCAD 2020

Handle Boolean-value constraints implicitly to reduce number of proof steps.



Indices - FMCAD 2020

Introduce indices to reduce proof size.

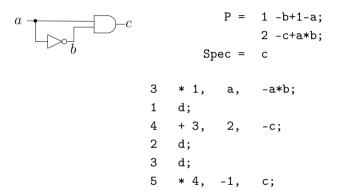


$$P = 1 -b+1-a;$$

 $2 -c+a*b;$
Spec = c

Deletion Rule - FMCAD 2020

Introduce a deletion rule to reduce the memory usage of the proof checker.



The extension rule allows to add model preserving polynomials to the constraint set.

$$\frac{\overline{x} \vee \overline{y} \qquad y \vee z}{\overline{x} \vee z}$$

The extension rule allows to add model preserving polynomials to the constraint set.

$$\frac{xy \qquad (1-y)(1-z)}{x(1-z)}$$

The extension rule allows to add model preserving polynomials to the constraint set.

$$\frac{xy}{x(1-z)} = \begin{cases} xy & (1-y)(1-z) \\ x(1-z) & 2 & y*z-y-z+1; \\ & 2 & y*z-y-z+1; \\ & & 2 & y*z-y-z+1; \\ & & 2 & y*z-y-z+$$

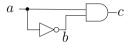
$$\begin{split} \textbf{EXT}(i,v,p) & \quad (X,P) \Rightarrow (X \cup \{v\}, P(i \mapsto -v+p)) \\ & \quad \text{provided that } P(i) = \bot \text{ and } v \notin X \text{ and } p \in \mathbb{Z}[X]/\langle B(X) \rangle, \\ & \quad \text{and } p^2 - p \equiv 0 \mod \langle B(X) \rangle. \end{split}$$

The extension rule allows to add model preserving polynomials to the constraint set.

$$\frac{xy}{x(1-z)} = \begin{cases} xy; & 2 & y*z-y-z+1; \\ & 2 & y*z-y-z+1; \\ & 2 & y*z-y-z+1; \end{cases}$$
 Spec = -x*z+x
$$3 = f, -z+1; \\ 4 * 3, y-1, -f*y+f-y*z+y+z-1; \\ 5 + 2, 4, -f*y+f; \\ 6 * 1, f, f*x*y; \\ 7 * 5, x, -f*x*y+f*x; \\ 8 + 6, 7, f*x; \\ 9 * 3, x, -f*x-x*z+x; \\ 10 + 8, 9, -x*z+x; \end{cases}$$

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.



$$P = 1 -b+1-a;$$

 $2 -c+a*b;$
 $Spec = c$

LPAC simulates PAC

```
3 % 1*(a), -a*b;

1 d;

4 % 3*(1)+2*(1), -c;

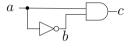
2 d;

3 d;

5 % 4*(-1), c;
```

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.



$$P = 1 -b+1-a;$$

 $2 -c+a*b;$
 $Spec = c$

LPAC simulates PAC

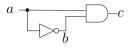
1 d; 4 % 3*(1)+2*(1), -c; 2 d; 2 d; 3 d;

% 4*(-1), c;

LPAC

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.



$$P = 1 -b+1-a;$$

 $2 -c+a*b;$
 $Spec = c$

LPAC simulates PAC

LPAC

LPAC simulates NSS

D. Kaufmann, M. Fleury, A. Biere, M. Kauers, Practical Algebraic Calculus and Nullstellensatz with the Checkers Pacheck and Pastèque and Nuss-Checker FMSD, 2022.

PACHECK2

- supports new and old PAC format
- PACHECK2 reads three input files <input>, <proof>, and <target>.
- Verifies that the polynomial in <target> is contained in the ideal generated by the polynomials in <input> using the rules provided in proof>.

Pastèque2

written by M. Fleury

Theorem Prover Isabelle/HOL

Refinement Approach, relying on Isabelle's Refinement Framework

- abstract specification on ideals: specification in ideal
- final step: executable checker

Isabelle's Archive of Formal Proofs 8000 lines of code

Evaluation: Circuit Verification

PACHECK2

		LPAC simulates PAC			LPAC			LPAC simulates NSS		
multiplier	n	steps	sec	MB	steps	sec	MB	steps	sec	MB
btor	128	0.3	5	94	0.1	2	94	1	2	98
btor	256	1.3	26	367	0.3	8	367	1	7	385
btor	512	5.2	149	1468	1.0	37	1496	1	35	1555

Pastèque2

		LPAC simulates PAC			LPAC			LPAC simulates NSS			
multiplier	n	steps	sec	MB	steps	sec	MB	steps	sec	MB	
btor	128	0.3	14	1305	0.1	7	1305	1	53	2044	
btor	256	1.3	67	3467	0.3	37	3816	1	762	8819	
btor	512	5.2	351	14651	1.0	238	16173	1	14347	41712	

LPAC with Proof Recycling – ongoing work

```
Let G = \{x - 2y + 2, y - z - 1, a - b, b + z, a + b + x + 1\}. We certify 1 \in \langle G \rangle:
  g1 x-2y+2;
  g2 v-z-1;
  g3 a-b;
  g4 b+z;
  g5 a+b+x+1:
  PNew (1, [(p1 v1-2*v2), (p2 v2-v3)], [(p3 % p1 + p2*(2), v1 - 2v3)], {p3})
  PApply (1, [v1 = x, v2 = y-1, v3 = z], (g1, g2), {(g6, x - 2z)})
  PApply (1, [v1 = a+b, v2 = b, v3 = -z], (g3, g4), \{(g7, a + b + 2z)\})
  g8 \% g5 + g6*(-1) + g7*(-1), 1;
```

D. Kaufmann and C. Hofstadler, Recycling Algebraic Proof Certificates, Submitted to SC2-Workshop, 2025.

Clemens Hofstadler and Thibaut Verron, Short proofs of ideal membership, Journal of Symbolic Computation, Volume 125, 2024

- Their application: Short proofs of ideal membership for noncommutative settings.
- All results also apply to the commutative case!

A not so trivial example

Theorem (Djordjević, Dinčić '09) A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} \; = \; (A^{\dagger}AB)^{\dagger}A^{\dagger} \; = \; B^{\dagger}A^{\dagger} \quad \Rightarrow \quad (AB)^{\dagger} \; = \; B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into

 $(ab)^{\dagger} - b^{\dagger}a^{\dagger} \in (f_1, \dots, f_{44})$ Proof $\dots - (ab)^{\dagger} abb^{\dagger} f_7(ab)^{\dagger} b(a^{\dagger} ab)^{\dagger} b(a^{\dagger} ab)^{\dagger} (abb^{\dagger})^{\dagger}$ $-(ab)^{\dagger}abb^{\dagger}f_{5}b(a^{\dagger}ab)^{\dagger}b(a^{\dagger}ab)^{\dagger}(abb^{\dagger})^{\dagger}$ $-(ab)^{\dagger}af_{22}a^{\dagger}ab(a^{\dagger}ab)^{\dagger}(abb^{\dagger})^{\dagger}+\dots$ How? Another proof $(ab)^{\dagger} - b^{\dagger} a^{\dagger} = f_{21} - f_{10} + b^{\dagger} f_{14} - f_{12} (ab)^{\dagger} - b^{\dagger} (abb^{\dagger})^{\dagger} f_{11} + b^{\dagger} (abb^{\dagger})^{\dagger} f_{15}$ $+(a^{\dagger}ab)^{\dagger}a^{\dagger}f_{0}(ab)^{\dagger}-b^{*}f_{23}((ab)^{\dagger})^{*}(ab)^{\dagger}-f_{21}ab(ab)^{\dagger}+f_{22}ab(ab)^{\dagger}$ $-\frac{f_{39}(a^{\dagger})^{*}((ab)^{\dagger})^{*}(ab)^{\dagger}+b^{\dagger}(abb^{\dagger})^{\dagger}((abb^{\dagger})^{\dagger})^{*}(b^{\dagger})^{*}f_{31}-b^{\dagger}f_{14}d^{*}b^{*}(a^{\dagger})^{*}}{}$ $+(a^{\dagger}ab)^{\dagger}a^{\dagger}abf_{12}(ab)^{\dagger}-b^{\dagger}(abb^{\dagger})^{\dagger}f_{15}((ab)^{\dagger})^{*}b^{*}(a^{\dagger})^{*}$ $+ f_{20}b^*(a^{\dagger})^*((ab)^{\dagger})^*(ab)^{\dagger} + (a^{\dagger}ab)^{\dagger}a^{\dagger}abb^*f_{23}((ab)^{\dagger})^*(ab)^{\dagger}$

Problem

Given $f, f_1, \dots, f_s \in R[X], N \in \mathbb{N}$ Compute $a_i \in \langle X \rangle, c_i \in R$ such that

$$f = \sum_{i=1}^{\leq N} c_i a_i \cdot f_i,$$

if existent, else return FAILED.

Problem

Given $f, f_1, \dots, f_s \in R[X], N \in \mathbb{N}$ Compute $a_i \in \langle X \rangle, c_i \in R$ such that

$$f = \sum_{i=1}^{\leq N} c_i a_i \cdot f_i,$$

if existent, else return FAILED.

Question Is this problem decidable?

Problem

Given $f, f_1, \dots, f_s \in R[X], N \in \mathbb{N}$ Compute $a_i \in \langle X \rangle, c_i \in R$ such that

$$f = \sum_{i=1}^{\leq N} c_i a_i \cdot f_i,$$

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for a_i

Problem

Given $f, f_1, \dots, f_s \in R[X], N \in \mathbb{N}$ Compute $a_i \in \langle X \rangle, c_i \in R$ such that

$$f = \sum_{i=1}^{\leq N} c_i a_i \cdot f_i,$$

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for a_i

Theorem The problem is decidable!

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in N steps

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in N steps

Theorem Let $f, f_1, \ldots, f_s \in R[X]$ and $N \in \mathbb{N}$. If there exists a minimal representation

$$f = \sum_{i=1}^{\leq N} c_i a_i \cdot f_i,$$

then $deg(a_if_i) \leq D := (N+1)\max deg(f, f_1, \dots, f_s)$.

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in N steps

Theorem Let $f, f_1, \ldots, f_s \in R[X]$ and $N \in \mathbb{N}$. If there exists a minimal representation

$$f = \sum_{i=1}^{\leq N} c_i a_i \cdot f_i,$$

then $deg(a_if_i) \leq D := (N+1)\max deg(f, f_1, \dots, f_s)$.

1. Make ansatz

$$f = \sum_{i} c_i a_i \cdot f_i$$

with unknown $c_i \in R$ and all $a_i \in \langle X \rangle$ with $\deg(a_i f_i) \leq D$.

2. Look for solution of the resulting linear system with $\leq N$ nonzero coordinates.

1. Make ansatz

$$f = \sum_{i} c_i a_i \cdot f_i$$

with unknown $c_i \in R$ and all $a_i \in \langle X \rangle$ with $\deg(a_i f_i) \leq D$.

2. Look for solution of the resulting linear system with $\leq N$ nonzero coordinates.

- Step 1 yields huge but finite system
- Step 2 is difficult but decidable
- The algorithm is not practical for non-trivial examples

1. Make ansatz

$$f = \sum_{i} c_i a_i \cdot f_i$$

with unknown $c_i \in R$ and all $a_i \in \langle X \rangle$ with $\deg(a_i f_i) \leq D$.

2. Look for solution of the resulting linear system with $\leq N$ nonzero coordinates.

- Step 1 yields huge but finite system
- Step 2 is difficult but decidable
- The algorithm is not practical for non-trivial examples

1. Make ansatz

$$f = \sum_{i} c_i a_i \cdot f_i$$

with unknown $c_i \in R$ and all $a_i \in \langle X \rangle$ with $\deg(a_i f_i) \leq D$.

2. Look for solution of the resulting linear system with $\leq N$ nonzero coordinates.

- Step 1 yields huge but finite system → signatures to reduce search space
- Step 2 is difficult but decidable
- The algorithm is not practical for non-trivial examples

1. Make ansatz

$$f = \sum_{i} c_i a_i \cdot f_i$$

with unknown $c_i \in R$ and all $a_i \in \langle X \rangle$ with $\deg(a_i f_i) \leq D$.

2. Look for solution of the resulting linear system with $\leq N$ nonzero coordinates.

- Step 1 yields huge but finite system → signatures to reduce search space
- Step 2 is difficult but decidable → linear programming to approx. solution
- The algorithm is not practical for non-trivial examples

CERTIFYING IDEAL MEMBERSHIP TESTS

Daniela Kaufmann

TU Wien, Austria

Dagstuhl Seminar 25231 "Certifying Algorithms for Automated Reasoning" Schloss Dagstuhl, Wadern, Germany

June 2, 2025

Given $f, f_1, \ldots, f_s \in R[X]$, a representation α of f with degree $\leq D \in \mathbb{N}$ Compute an ℓ_1 -minimal representation of f with degree $\leq D$

Given $f, f_1, \ldots, f_s \in R[X]$, a representation α of f with degree $\leq D \in \mathbb{N}$ Compute an ℓ_1 -minimal representation of f with degree $\leq D$

- 1. Compute Gröbner basis of $\operatorname{Syz}(f_1,\ldots,f_s)$ up to degree D
- 2. Compute search space $B_{\alpha} = \{a_1 f_1, \dots, a_k f_k\}$ (sym. preprocessing)
- 3. Make ansatz for f using B_{α} and α
- 4. Compute ℓ_1 -minimal solution of the resulting system (linear programming)

Given $f, f_1, \dots, f_s \in R[X]$, a representation α of f with degree $\leq D \in \mathbb{N}$ Compute an ℓ_1 -minimal representation of f with degree $\leq D$

- 1. Compute Gröbner basis of $\operatorname{Syz}(f_1,\ldots,f_s)$ up to degree D
- 2. Compute search space $B_{\alpha} = \{a_1 f_1, \dots, a_k f_k\}$ (sym. preprocessing)
- 3. Make ansatz for f using B_{α} and α
- 4. Compute ℓ_1 -minimal solution of the resulting system (linear programming)

Observations

Still exponential worst-case complexity, but better behaviour in practice

Given $f, f_1, \dots, f_s \in R[X]$, a representation α of f with degree $\leq D \in \mathbb{N}$ Compute an ℓ_1 -minimal representation of f with degree $\leq D$

- 1. Compute Gröbner basis of $\operatorname{Syz}(f_1,\ldots,f_s)$ up to degree D
- 2. Compute search space $B_{\alpha} = \{a_1 f_1, \dots, a_k f_k\}$ (sym. preprocessing)
- 3. Make ansatz for f using B_{α} and α
- 4. Compute ℓ_1 -minimal solution of the resulting system (linear programming)

Observations

- Still exponential worst-case complexity, but better behaviour in practice
- In general, no guarantee for shortest repr., but good behaviour in practice
- Many examples are even totally unimodular → algorithm is guaranteed to return a shortest representation

Given $f, f_1, \dots, f_s \in R[X]$, a representation α of f with degree $\leq D \in \mathbb{N}$ Compute an ℓ_1 -minimal representation of f with degree $\leq D$

- 1. Compute Gröbner basis of $\operatorname{Syz}(f_1,\ldots,f_s)$ up to degree D
- 2. Compute search space $B_{\alpha} = \{a_1 f_1, \dots, a_k f_k\}$ (sym. preprocessing)
- 3. Make ansatz for f using B_{α} and α
- 4. Compute ℓ_1 -minimal solution of the resulting system (linear programming)

Observations

- Still exponential worst-case complexity, but better behaviour in practice
- In general, no guarantee for shortest repr., but good behaviour in practice
- Many examples are even totally unimodular → algorithm is guaranteed to return a shortest representation