CERTIFYING IDEAL MEMBERSHIP TESTS

Daniela Kaufmann
TU Wien, Austria

Dagstuhl Seminar 25231 "Certifying Algorithms for Automated Reasoning"
Schloss Dagstuhl, Wadern, Germany

June 2, 2025

B Informatics FWFF asen

Ideal Membership Problem

Given z —y and z — 2 € Q[z, y].

Is f = zy + = — 3y a consequence of these two equations?

Ideal Membership Problem

Given z —y and z — 2 € Q[z, y].

Is f = zy + = — 3y a consequence of these two equations?

r—y=0Az—-2=0 = zy+z—3y=07?

Ideal Membership Problem
Given z —y and z — 2 € Q[z, y|.
Is f = zy + = — 3y a consequence of these two equations?

r—y=0Az—-2=0 = zy+z—3y=07?

Algebraically: zy +z — 3y € (x —y,z — 2)?

Ideal

Ideal. A subset I C R[X] is an ideal if it satisfies:

moel
B Iffgel, thenf+gel.
B Iffelandh € R X]|thenhf € I.

Ideal

Ideal. A subset I C R[X] is an ideal if it satisfies:

moel
B Iffgel, thenf+gel.
B Iffelandh € R X]|thenhf € I.

Basis.
Let f1,..., fs € R[X]. Then we set

(fioooos fs) ={hifi+---+hsfs | h1,... hs € RIX]}.
(f1,..., fs)is anideal and is called the ideal generated by fi,..., fs.

Hilbert Basis Theorem. Every ideal has a finite basis.

Interpretation

The ideal (f1, ..., fs) has a nice interpretation in terms of polynomial equations.

Given fi,..., fs € R[X], we get the system of equations

Interpretation

The ideal (f1, ..., fs) has a nice interpretation in terms of polynomial equations.
Given fi,..., fs € R[X], we get the system of equations

f1=0,

fs=0

Let hi,...,hs € R[X]. We can derive hi f1 =0, hafa =0, h1f1 + hafo = 0 etc.

Hence we obtain k1 f1 + - - - + hs fs = 0 as a consequence of our initial system.

Interpretation

The ideal (f1, ..., fs) has a nice interpretation in terms of polynomial equations.

Given fi,..., fs € R[X], we get the system of equations

Let hi,...,hs € R[X]. We can derive hi f1 =0, hafa =0, h1f1 + hafo = 0 etc.

Hence we obtain k1 f1 + - - - + hs fs = 0 as a consequence of our initial system.

Thus, we can think of (f1,..., fs) as consisting of all “polynomial consequences” of the equations

fi=fo=...=f.=0.

Why do we care about ideal membership?

B Solving Polynomial Systems: Check if a polynomial follows from a system of
equations

B Automated Theorem Proving: Prove algebraic properties and relationships from
given axioms

B Formal Verification: Check whether specification is implied from a model defined by
polynomial equations

B Algebraic Geometry: Determine whether a polynomial vanishes on a variety defined
by an ideal

B Computer Algebra: Simplify expressions and perform reductions using ideal
membership

Ideal Membership Problem

LetI =(z —y,z —2) C Q[z,y].
Is the polynomial f =xy +x — 3y € I?

Ideal Membership Problem

LetI =(z —y,z —2) C Q[z,y].
Is the polynomial f = zy+ 2 — 3y € I?

Spoiler: Yes, because
ry+z—3y=(z—y)+ylz—2)

Ideal Membership Problem

LetI =(z —y,z —2) C Q[z,y].
Is the polynomial f = zy+ 2 — 3y € I?

We need some kind of division/reduction algorithm f Huted o check this.

Leading Elements

Let fin R[z1,...,zy,] be ordered w.r.t to an ordering < such that

f=a1m1 4+ a2+ ...+ GmTm.

Then we call

B 1t(f) = a1 is the leading term of f.
B Im(f) = 71 is the leading monomial of f.
B Ic(f) = a1 is the leading coefficient of f.

B f—1t(f) = a2+ ...+ amTm is the tail of f.

Algorithm f Lol

Input: fi,..., [f

Output: ay, ..., a.r
ay=0;...;a,:=0;r =0
pi=f
WHILE p #0DO

i:=1

divisionoccurred := false
WHILE ; < s AND divisionoccurred = false DO
IF L1(f;) divides (p) THEN
ai = a;i + LT(p)/LT(fi)
p = p— LIP)/LT) fi

divisionoccurred:= true

ELSE
i=i+1
IF divisionoccurred = false THEN
r:=r+LT(p)

pi=p—LI(p)

*Cox, Little, O’Shea: Ideals, Varieties, and Algorithms, 4th edition, Springer 2015

Ideal Membership Problem

LetI =(z —y,z —2) C Q[z,y].
Is the polynomial f =xy +x — 3y € I?

Ideal Membership Problem

LetI =(z —y,z —2) C Q[z,y].
Is the polynomial f =xy +x — 3y € I?

Ty 4+ — 3y —% 2 — 2

xy+x—3yﬁ>y—2

Grobner Basis

Because of Grobner bases the ideal membership problem is decidable:

B Everyideal I C R[X] has a Grébner basis G w.r.t. a fixed monomial order.

B Buchberger’s algorithm computes a Grébner basis G = {g1,...,9m }
for the ideal (f1,..., fs).

B Given a Grobner basis G, there is a computable function redg: R[X] — R[X]
suchthatV f € R[X]:redg(f) =0 < f € (G).

B If f,r € R[X] are such that reds(f) = r, then there exist hy, ..., hy, € R[X]
suchthat f —r =hig1 + - + hmGm-

Grobner Bases

Grobner basis. Fix a monomial order. A finite subset G = {¢1,...,9:} C R[z1,...,zx] of anideal
I C R[z1,...,z,] is said to be a Grébner basis if (1t(g1), ..., 1t(g:)) = (It(1)).

Buchberger’s Criterion. G is a Grobner basis of the ideal I if and only if the remainder of the
division of spol(p, q) by G is zero for all pairs (p,q) € G x G.

S-Polynomials. We define S-polynomials

spol(p,q) 1= lcm(lltéﬁ)z;)lt(q))p_ lcm(lltéﬁ)(;)lt(Q))q

forall p,q € R[z1,...,zxs] \ {0}, with lem the least common multiple.

Computing a Grobner Basis

Algorithm: Buchberger’s Algorithm

Input : F={f1,...,fs}, monomial ordering <

Output: Grébner basis G = {g1,...,g9:} w.rt. <, suchthat (fi,..., fs) = (g1, ...

G =F;

C={{g1,92} | 91,92 € G, g1 # g2}

while not all pairs {g1, g2} € C are marked do
choose unmarked pair {g1, g2};
mark {g1, g2};

h = normalform of spol(g1, g2) w.rt. G (spol(g1, g2) <, h);
if h # 0 then

C=CuU{{g,h}g€G}

G =GU{h};

return G

7gt>

Ideal Membership Problem

Let/ = <f17f2> = (:c—y,:c—?) C Q[w>y]
Is the polynomial f = zy + 2 — 3y € I?

Ideal Membership Problem

Let] = <f17f2> = <:c—y,:c—2) C Q['T>y]
Is the polynomial f = zy + 2 — 3y € I?

Calculate a Grébner basis G of I:

Ideal Membership Problem

LetI = <f17f2> = (:c—y,:c—Q) C Q['T>y]'
Is the polynomial f = zy + 2 — 3y € I?

Calculate a Grébner basis G of I:

spol(fi, f2) = fi — fa =y —2=: f3,80 G = {f1, f2, f3}.

Ideal Membership Problem

LetI = <f17f2> = <l’—y,l‘—2> C Q['T7y}
Is the polynomial f = zy + 2 — 3y € I?

Calculate a Grébner basis G of I:
spol(fi, f2) = fi — fa =y —2=: f3,80 G = {f1, f2, f3}.
spol(fi, fa) = yfr —afs =2z —y* 42 —a B0

spol(fa, f3) = yfa — afs = 2z — 2y L5 0

Ideal Membership Problem

LetI = <f17f2> = <l’—y,l‘—2> C Q['T?y}
Is the polynomial f = zy + 2 — 3y € I?

Calculate a Grébner basis G of I:
spol(fi, f2) = fi — fa =y —2=: f3,80 G = {f1, f2, f3}.
spol(fi, fa) = yfr —afs =2z —y* 42 —a B0

spol(fa, f3) = yfa — afs = 2z — 2y L5 0

Grobner(fi, f2) =G = {z —y,z — 2,y — 2}

Ideal Membership Problem

Let I = (f1, f2) = (z —y,z — 2) C Q[z, y].
Is the polynomial f = zy + 2 — 3y € I?

Calculate a Grébner basis G of I:

spol(fi, f2) = fi — fa =y —2=: f3,80 G = {f1, f2, f3}.

spol(fi, fs) = yfi —afs =22 —y* 254> —4 50
spol(fa, f3) = yfe —afs =2z — 2y ELIN)

Grobner(fi, f2) =G ={z —y,z — 2,y — 2}
ay+z—3y T2 2y 250

xy+x—3yﬁ>y—2ﬂ>0

How to derive a certificate for spol(f;, f;) and f REATEEE A

Nullstellensatz Proofs

Input: fi....., fi, f

Output: ay, ..., Ay, 1

ay =0 vy o =0r =0
p=17

WHILE p # 0 DO
=1
divisionoccurred := false
‘WHILE i < s AND divisionoccurred = false DO
IF LT(f;) divides (p) THEN
a; = a; + LT(p)/LT(f;)
p = p— LTP)/LT(fi) fi

divisionoccurred:= true

ELSE
i=i+1
IF divisionoccurred = false THEN
r:=r+LT(p)

pi=p—LT(p)

B Provides list of co-factors a, ..., as.

B Correctness is checked by
expanding linear combination

f=>aifi
B Condensed proof format.
B Not ideal for debugging.

Beame, P, Impagliazzo, R., Krajicek, J., Pitassi, T., Pudlak, P.: Lower Bounds on Hilbert's Nullstellensatz and Propositional

Proofs. In: Proc. London Math. Society. vol. s3-73, pp. 1-26 (1996)

G ={ -b+1—aq, b=-a
—c+ ab, c=alANb=aA—a

QWC @?—a} acB
b f= e

redg(f) = 0

f=c=a(-b+1—-a)—1(—c+ab) + 1(a® — a)

P=(a,—1,1)

Polynomial Calculus*

Let G C R[X]and f € R[X].

Proof: Sequence P = (p1,...pn), Where each p;, is obtained by one of the two rules:

, A i, p; appearing earlier in the proof
Addition i i Pib; BPRERTIO © P
pi +Dpj or are contained in G

p; appearing earlier in the proof
Multiplication pi or is contained in G
P and ¢ € R[X] being arbitrary

If p, = f we have f € (G).

Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: STOC. pp.
174-183. ACM (1996)

G ={ -b+1-aq, b=-a
—c+ ab, c=alANb=aA—a
a®—a,} a€B
;= e
redg(f) = 0
—-b+1—a
—ab+a —a? a’> —a
N —ab —c+ab
—c
*
c
P = (-ab+a—a? —ab, —c, c)

Practical Algebraic Calculus

We translate the polynomial calculus into a more concrete proof format:

B For correctness it is important to know how the polynomials in the proof where derived
B Usually known — store this information

Practical Algebraic Calculus (PAC)

allows automated proof checking

Practical Algebraic Calculus - SC? 2018

P = -b+l-a, b=—a
GWC -c+axb, c=aANb=aA—a
b -a~2+a a=1Va=T
Target = ¢ c=_1
* -b+1-a, a, -a*xb+a-a~2;
* -a”~2+a, -1, a~2-a;
+ -a*b+ta-a~2, a~2-a, -axb;
+ -axb, -c+axb, -C;
* -c, -1, c;

D. Ritirc, A. Biere, M. Kauers, A Practical Polynomial Calculus for Arithmetic Circuit Verification, SC2-Workshop, 2018.

Proof Checking

A proof rule contains four components:

o0:v,w, p;

Proof checking:

B Connection property: v, w are given polynomials or conclusions p; of previous rules
B Inference property: verify correctness of eachrule,e.g. p=v+wforo="+"

B Target check: at least one p; is equal to f.

20

Proof Checking Algorithm

input G sequence of given polynomials
r1---r, sequence of PAC proof rules

n o«

output “incorrect”, “correct-proof”, or “correct-refutation”

Py G
fori < 1...k
let r; = (0, v, wi, pi)
case o; = +
ifv,eP_1 ANw;€P,_1 A p; =v; +w; then P; eappend(Pi,l,pi)
else return “incorrect”
case o; = x
if v, e P,_1 A p; =v; xw; then P; < append(Pifl,pi)
else return “incorrect”
fori «1...k
if p; = f then return “target-checked”
return “correct-proof”

21

Engineering
Use PolynomialReduce for reduction f S, 0and deriving co-factors hy, ..., hy
suchthat f = hig1 + ...+ hpgx.
First we generate a multiplication proof rule for each product h;g;.
*: g1, b, hagas *: Gk, e, Rk s
These products are now simply added together as follows:
+: hig, haga, hig1 + hago;

+: higi + hago, hags, higi + haga + hzgs;

+: higi+...+he—19k-1, hegr, f;

22

Boolean Variables - FMCAD 2020

Handle Boolean-value constraints implicitly to reduce number of proof steps.

P = -btl-a,
b —-a~2+a
Spec = ¢
-b+1-a, a, -axb;
+ -axb, -c+axb, -C;
-c, -1, c;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pasteque for the Practical Algebraic Calculus, FMCAD, 2020.

23

Indices - FMCAD 2020

Introduce indices to reduce proof size.

a c P 1 -b+l-a;
2 -c+axb;
b

Spec = ¢

3 * 1, a, -a%*b;
4 + 3, 2, -c;
5 * 4, -1, [

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastéque for the Practical Algebraic Calculus, FMCAD, 2020.

Deletion Rule - FMCAD 2020

Introduce a deletion rule to reduce the memory usage of the proof checker.

a c P= 1 -bt+l-a;
2 -c+axb;
b Spec = ¢
1, a, -ax*b;

g w N W
¥ QA Q + Qo %

47 —1’ C;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastéque for the Practical Algebraic Calculus, FMCAD, 2020.

25

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

TVY yVz

TV z

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastéque for the Practical Algebraic Calculus, FMCAD, 2020.26

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

zy (1-y)(1=2)
x(1—2z)

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastéque for the Practical Algebraic Calculus, FMCAD, 2020.26

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

v (-y(i-2) A
(1 - 2) yremymEnS:
Spec = -x*z+x
3 = £, -z+1;
4 *x 3, y-1, -fxy+f-y*z+y+z-1;
5 + 2, 4, -fxy+f;

ExT(i,v,p) (X,P)= (XU{v},P(i— —v+Dp))
provided that P(:) = L and v ¢ X and p € Z[X]/(B(X)),
and p? —p =0 mod (B(X)).

26

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

P = 1 xxy;
my (1-yi-2) A
1 _ I

o 2 Spec = -x*z+x

3 = £, -z+1;

4 *x 3, y-1, -fxy+f-y*rz+y+z-1;
5 + 2, 4, -fxy+f;

6 * 1, £, f*xxxy;

7 x b, x, -f*x*xy+f*x;

8 + 6, 7, f£*x;

9 x 3, X, -f*xx-x*z+x;

10 + 8, 9, -x*z+x;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastéque for the Practical Algebraic Calculus, FMCAD, 2020.26

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.

GT_E;x:f—j \—c
b

LPAC simulates PAC

a w N P Prw

% 1x(a), -axb;

d;

% 3% (1)+2% (1), -c;
d;

d;

% 4x(-1), c;

P

Spec

1 -bt+l-a;
2 -ctaxb;
c

27

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.

GT_E;x:f—j \—c
b

LPAC simulates PAC

a w N P Prw

% 1x(a), -a*b;

d;

% 3% (1)+2% (1), -c;
d;

d;

% 4x(-1), c;

LPAC

=N e

P= 1 -b+tl-a;

2 -ctaxb;
Spec = ¢
% 1x(a)+2x(1), -c;
d;
d;

% 4x(-1), c;

27

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.

a c P 1 -bt+l-a;
2 -ctaxb;
b

Spec = ¢
LPAC simulates PAC LPAC LPAC simulates NSS
3 % 1x(a), -axb; 3 % 1x(a)+2x(1), -c; 3 % 1x(-a)+2x(-1), -c;
1 d; 1 d;
4 Y 3x(1)+2%(1), -c; 2 4d;
2 d; 4 % 4x(-1), c;
3 d;

5 % 4x(-1), c;
D. Kaufmann, M. Fleury, A. Biere, M. Kauers, Practical Algebraic Calculus and Nullstellensatz with the Checkers Pacheck and

Pasteque and Nuss-Checker FMSD, 2022.
27

PACHECK2

B supports new and old PAC format

B PACHEGK2 reads three input files <input>, <proof>, and <target>.

B Verifies that the polynomial in <target> is contained in the ideal generated by the
polynomials in <input> using the rules provided in <proof>.

28

PASTEQUE2

written by M. Fleury

Theorem Prover Isabelle/HOL

Refinement Approach, relying on Isabelle’s Refinement Framework
B abstract specification on ideals: specification in ideal
H final step: executable checker

Isabelle’s Archive of Formal Proofs 8000 lines of code

29

Evaluation: Circuit Verification

PACHECK2
LPAC simulates PAC LPAC LPAC simulates NSS
multiplier n steps sec MB | steps sec MB | steps sec MB
btor 128 0.3 5 94 0.1 2 94 1 2 98
btor 256 1.3 26 367 0.3 8 367 1 7 385
btor 512 5.2 149 1468 1.0 37 1496 1 35 1555
PASTEQUE2
LPAC simulates PAC LPAC LPAC simulates NSS
multiplier n steps sec MB | steps sec MB | steps sec MB
btor 128 03 14 1305 0.1 7 1305 1 53 2044
btor 256 1.3 67 3467 0.3 37 3816 1 762 8819
btor 512 5.2 351 14651 1.0 238 16173 1 14347 41712

LPAC with Proof Recycling — ongoing work

LetG={r—-2y+2,y—2—1,a—b, b+ 2z, a+b+x+1}. We certify 1 € (G):

gl x-2y+2;
g2 y-z-1;
g3 a-b;

g4 Dbtz;

gh atb+x+l;

PNew (1, [(pl vi-2%v2), (p2 v2-v3) 1, [(p3 % pl + p2*%(2), vi - 2v3) 1, {p3})

PApply (1, [vl = x, v2 = y-1, v3 = z], (g1, g2), {(g6, x - 22)})
PApply (1, [vl = a+b, v2 = b, v3 -z],(g3, g4), {(g7, a + b + 22)})

g8 % gh + gbx(-1) + g7*x(-1), 1;
D. Kaufmann and C. Hofstadler, Recycling Algebraic Proof Certificates, Submitted to SC2-Workshop, 2025.

31

Shorter Proofs

Clemens Hofstadler and Thibaut Verron,
Short proofs of ideal membership,
Journal of Symbolic Computation, Volume 125, 2024

B Their application: Short proofs of ideal membership for noncommutative settings.
B All results also apply to the commutative case!

32

A not so trivial example
BN (Diordievie, Dincie '09) A, B matrices such that AB exists.

BI(ABB')| = (ATAB)IAT — BIAT
Correctness of this theorem translates into

(ab)' —bfa® € (f1,

~ (AB)! = BIA!

- faa)

..~ (ab)TabbTf; (ab)Tb(atab)ib(atab)f(abbl)t =
— (ab)Tabbifsb(atab)iblalab)f (abbl)f

— (ab)Taf,,afab(atab)f(abbf)T ...

Another proof

(ab)t —bfal = f5; —f10+bTf14 —f12(ab)T —bT(abbT)Tr; +bT(abbl)Tr5
t(afab)talfy(ab)t —b*fy3((ab)T)*(ab)t — f27ablab)f + f25abab)t
f3o(af)*((ab)1)* (ab)T + bT(abbT)T((abbT)T)* (bT)*f3; —bT) d*b* (at)*
+ (atab)Tatabfy,(ab)T —bT(abbT)Tf5((ab)T)*b* (at)*

+faob*(a)*((ab)T)* (ab)t + (aTab)Tatabb* ;3 ((ab)T)* (ab)f

Shorter Proofs

Problem

Given fifi,-- fs € RIX],NeN
Compute a; € (X), ¢; € R such that

<N
=Y caifi,
=1

if existent, else return FAILED.

34

Shorter Proofs

Problem
Given fifi,-- fs € RIX],NeN
Compute a; € (X), ¢; € R such that

<N
=Y caifi,
=1

if existent, else return FAILED.

Question Is this problem decidable?

34

Shorter Proofs

Problem
Given fifi,-- fs € RIX],NeN
Compute a; € (X), ¢; € R such that

<N
=Y caifi,
=1

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for a;

34

Shorter Proofs

Problem
Given fifi,-- fs € RIX],NeN
Compute a; € (X), ¢; € R such that

<N
=Y caifi,
=1

if existent, else return FAILED.

Question Is this problem decidable?
Difficulty: no degree bound for a;

Theorem The problem is decidable!

34

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in IV steps

35

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in IV steps

Theorem Let f, f1,..., fs € R[X] and N € N. If there exists a minimal representation
<N
f= Z cia; - fi,
=1

then deg(a; f;) < D := (N 4+ 1)maxdeg(f, f1,---, fs)-

35

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in IV steps

Theorem Let f, f1,..., fs € R[X] and N € N. If there exists a minimal representation
<N
f= Z cia; - fi,
=1

then deg(a; f;) < D := (N 4+ 1)maxdeg(f, f1,---, fs)-

35

A first algorithm

1. Make ansatz
f = Z CiQ; - fi

with unknown ¢; € R and all a;, € (X) with deg(a; f;) < D.
2. Look for solution of the resulting linear system with < N nonzero coordinates.

36

A first algorithm

1. Make ansatz
[= Z cia - fi
with unknown ¢; € R and all a;, € (X) with deg(a; f;) < D.
2. Look for solution of the resulting linear system with < N nonzero coordinates.

Observations
B Step 1 yields huge but finite system
B Step 2 is difficult but decidable

B The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
[= Z cia - fi
with unknown ¢; € R and all a;, € (X) with deg(a; f;) < D.
2. Look for solution of the resulting linear system with < N nonzero coordinates.

Observations
B Step 1 yields huge but finite system
B Step 2 is difficult but decidable

B The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
[= Z cia - fi
with unknown ¢; € R and all a;, € (X) with deg(a; f;) < D.
2. Look for solution of the resulting linear system with < N nonzero coordinates.

Observations
B Step 1 yields huge but finite system ~- signatures to reduce search space
B Step 2 is difficult but decidable

B The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
f = Z CiQ; - fi

with unknown ¢; € R and all a;, € (X) with deg(a;f;) < D.
2. Look for solution of the resulting linear system with < N nonzero coordinates.
Observations
B Step 1 yields huge but finite system ~- signatures to reduce search space
B Step 2 is difficult but decidable ~~ linear programming to approx. solution
B The algorithm is not practical for non-trivial examples

36

CERTIFYING IDEAL MEMBERSHIP TESTS

Daniela Kaufmann
TU Wien, Austria

Dagstuhl Seminar 25231 "Certifying Algorithms for Automated Reasoning"
Schloss Dagstuhl, Wadern, Germany

June 2, 2025

B Informatics FWFF asen

A practical algorithm

Given fyf1,---, fs € R[X], arepresentation « of f with degree < D € N
Compute an ¢;-minimal representation of f with degree < D

A practical algorithm

Given fyf1,---, fs € R[X], arepresentation « of f with degree < D € N
Compute an ¢;-minimal representation of f with degree < D

1. Compute Grébner basis of Syz(f1, ..., fs) up to degree D

2. Compute search space B, = {a1 f1,...,arfr} (Sym. preprocessing)

3. Make ansatz for f using B, and «

4. Compute ¢;-minimal solution of the resulting system (linear programming)

A practical algorithm

Given fyf1,---, fs € R[X], arepresentation « of f with degree < D € N
Compute an ¢;-minimal representation of f with degree < D

1. Compute Grébner basis of Syz(f1, ..., fs) up to degree D

2. Compute search space B, = {a1 f1,...,arfr} (Sym. preprocessing)

3. Make ansatz for f using B, and «

4. Compute ¢;-minimal solution of the resulting system (linear programming)

Observations
B Still exponential worst-case complexity, but better behaviour in practice

A practical algorithm

Given fyf1,---, fs € R[X], arepresentation « of f with degree < D € N
Compute an ¢;-minimal representation of f with degree < D

1. Compute Grébner basis of Syz(f1, ..., fs) up to degree D

2. Compute search space B, = {a1 f1,...,arfr} (Sym. preprocessing)

3. Make ansatz for f using B, and «

4. Compute ¢;-minimal solution of the resulting system (linear programming)

Observations
B Still exponential worst-case complexity, but better behaviour in practice

B In general, no guarantee for shortest repr., but good behaviour in practice
B Many examples are even totally unimodular ~~ algorithm is guaranteed to return a
shortest representation

A practical algorithm

Given fyf1,---, fs € R[X], arepresentation « of f with degree < D € N
Compute an ¢;-minimal representation of f with degree < D

1. Compute Grébner basis of Syz(f1, ..., fs) up to degree D

2. Compute search space B, = {a1 f1,...,arfr} (Sym. preprocessing)

3. Make ansatz for f using B, and «

4. Compute ¢;-minimal solution of the resulting system (linear programming)

Observations
B Still exponential worst-case complexity, but better behaviour in practice

B In general, no guarantee for shortest repr., but good behaviour in practice
B Many examples are even totally unimodular ~~ algorithm is guaranteed to return a
shortest representation

