
CERTIFYING IDEAL MEMBERSHIP TESTS

Daniela Kaufmann

TU Wien, Austria

Dagstuhl Seminar 25231 "Certifying Algorithms for Automated Reasoning"
Schloss Dagstuhl, Wadern, Germany

June 2, 2025

Ideal Membership Problem

Given x− y and x− 2 ∈ Q[x, y].

Is f = xy + x− 3y a consequence of these two equations?

x− y = 0 ∧ x− 2 = 0 =⇒ xy + x− 3y = 0?

Algebraically: xy + x− 3y ∈ ⟨x− y, x− 2⟩?

1

Ideal Membership Problem

Given x− y and x− 2 ∈ Q[x, y].

Is f = xy + x− 3y a consequence of these two equations?

x− y = 0 ∧ x− 2 = 0 =⇒ xy + x− 3y = 0?

Algebraically: xy + x− 3y ∈ ⟨x− y, x− 2⟩?

1

Ideal Membership Problem

Given x− y and x− 2 ∈ Q[x, y].

Is f = xy + x− 3y a consequence of these two equations?

x− y = 0 ∧ x− 2 = 0 =⇒ xy + x− 3y = 0?

Algebraically: xy + x− 3y ∈ ⟨x− y, x− 2⟩?

1

Ideal

Ideal. A subset I ⊂ R[X] is an ideal if it satisfies:

■ 0 ∈ I

■ If f, g ∈ I, then f + g ∈ I.

■ If f ∈ I and h ∈ R[X] then hf ∈ I.

Basis.
Let f1, . . . , fs ∈ R[X]. Then we set

⟨f1, . . . , fs⟩ = {h1f1 + · · ·+ hsfs | h1, . . . , hs ∈ R[X]}.

⟨f1, . . . , fs⟩ is an ideal and is called the ideal generated by f1, . . . , fs.

Hilbert Basis Theorem. Every ideal has a finite basis.

2

Ideal

Ideal. A subset I ⊂ R[X] is an ideal if it satisfies:

■ 0 ∈ I

■ If f, g ∈ I, then f + g ∈ I.

■ If f ∈ I and h ∈ R[X] then hf ∈ I.

Basis.
Let f1, . . . , fs ∈ R[X]. Then we set

⟨f1, . . . , fs⟩ = {h1f1 + · · ·+ hsfs | h1, . . . , hs ∈ R[X]}.

⟨f1, . . . , fs⟩ is an ideal and is called the ideal generated by f1, . . . , fs.

Hilbert Basis Theorem. Every ideal has a finite basis.

2

Interpretation

The ideal ⟨f1, . . . , fs⟩ has a nice interpretation in terms of polynomial equations.

Given f1, . . . , fs ∈ R[X], we get the system of equations

f1 = 0,

...

fs = 0.

Let h1, . . . , hs ∈ R[X]. We can derive h1f1 = 0, h2f2 = 0, h1f1 + h2f2 = 0 etc.

Hence we obtain h1f1 + · · ·+ hsfs = 0 as a consequence of our initial system.

Thus, we can think of ⟨f1, . . . , fs⟩ as consisting of all “polynomial consequences” of the equations
f1 = f2 = . . . = fs = 0.

3

Interpretation

The ideal ⟨f1, . . . , fs⟩ has a nice interpretation in terms of polynomial equations.

Given f1, . . . , fs ∈ R[X], we get the system of equations

f1 = 0,

...

fs = 0.

Let h1, . . . , hs ∈ R[X]. We can derive h1f1 = 0, h2f2 = 0, h1f1 + h2f2 = 0 etc.

Hence we obtain h1f1 + · · ·+ hsfs = 0 as a consequence of our initial system.

Thus, we can think of ⟨f1, . . . , fs⟩ as consisting of all “polynomial consequences” of the equations
f1 = f2 = . . . = fs = 0.

3

Interpretation

The ideal ⟨f1, . . . , fs⟩ has a nice interpretation in terms of polynomial equations.

Given f1, . . . , fs ∈ R[X], we get the system of equations

f1 = 0,

...

fs = 0.

Let h1, . . . , hs ∈ R[X]. We can derive h1f1 = 0, h2f2 = 0, h1f1 + h2f2 = 0 etc.

Hence we obtain h1f1 + · · ·+ hsfs = 0 as a consequence of our initial system.

Thus, we can think of ⟨f1, . . . , fs⟩ as consisting of all “polynomial consequences” of the equations
f1 = f2 = . . . = fs = 0.

3

Why do we care about ideal membership?

■ Solving Polynomial Systems: Check if a polynomial follows from a system of
equations

■ Automated Theorem Proving: Prove algebraic properties and relationships from
given axioms

■ Formal Verification: Check whether specification is implied from a model defined by
polynomial equations

■ Algebraic Geometry: Determine whether a polynomial vanishes on a variety defined
by an ideal

■ Computer Algebra: Simplify expressions and perform reductions using ideal
membership

■ ...

4

Ideal Membership Problem

Let I = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

5

Ideal Membership Problem

Let I = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Spoiler: Yes, because
xy + x− 3y = (x− y) + y(x− 2)

5

Ideal Membership Problem

Let I = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

We need some kind of division/reduction algorithm f
{f1,...fs}−−−−−−→ r to check this.

5

Leading Elements

Let f in R[x1, . . . , xn] be ordered w.r.t to an ordering < such that

f = a1τ1 + a2τ2 + . . .+ amτm.

Then we call

■ lt(f) = a1τ1 is the leading term of f .

■ lm(f) = τ1 is the leading monomial of f .

■ lc(f) = a1 is the leading coefficient of f .

■ f − lt(f) = a2τ2 + . . .+ amτm is the tail of f .

6

Algorithm f
{f1,...fs}−−−−−→ r

*Cox, Little, O’Shea: Ideals, Varieties, and Algorithms, 4th edition, Springer 2015
7

Ideal Membership Problem

Let I = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

8

Ideal Membership Problem

Let I = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

xy + x− 3y
x−y−−−→ y2 − 2y

xy + x− 3y
x−2−−−→ y − 2

8

Gröbner Basis

Because of Gröbner bases the ideal membership problem is decidable:

■ Every ideal I ⊆ R[X] has a Gröbner basis G w.r.t. a fixed monomial order.

■ Buchberger’s algorithm computes a Gröbner basis G = {g1, . . . , gm}
for the ideal ⟨f1, . . . , fs⟩.

■ Given a Gröbner basis G, there is a computable function redG : R[X] → R[X]

such that ∀ f ∈ R[X] : redG(f) = 0 ⇐⇒ f ∈ ⟨G⟩.

■ If f, r ∈ R[X] are such that redG(f) = r, then there exist h1, . . . , hm ∈ R[X]

such that f − r = h1g1 + · · ·+ hmgm.

9

Gröbner Bases

Gröbner basis. Fix a monomial order. A finite subset G = {g1, . . . , gt} ⊂ R[x1, . . . , xn] of an ideal
I ⊂ R[x1, . . . , xn] is said to be a Gröbner basis if ⟨lt(g1), . . . , lt(gt)⟩ = ⟨lt(I)⟩.

Buchberger’s Criterion. G is a Gröbner basis of the ideal I if and only if the remainder of the
division of spol(p, q) by G is zero for all pairs (p, q) ∈ G×G.

S-Polynomials. We define S-polynomials

spol(p, q) :=
lcm(lt(p), lt(q))

lm(p)
p− lcm(lt(p), lt(q))

lm(q)
q

for all p, q ∈ R[x1, . . . , xn] \ {0}, with lcm the least common multiple.

10

Computing a Gröbner Basis

Algorithm: Buchberger’s Algorithm
Input : F = {f1, . . . , fs}, monomial ordering <

Output: Gröbner basis G = {g1, . . . , gt} w.r.t. <, such that ⟨f1, . . . , fs⟩ = ⟨g1, . . . , gt⟩
G = F ;
C = {{g1, g2} | g1, g2 ∈ G, g1 ̸= g2};
while not all pairs {g1, g2} ∈ C are marked do

choose unmarked pair {g1, g2};
mark {g1, g2};

h = normalform of spol(g1, g2) w.r.t. G (spol(g1, g2)
G−→ h);

if h ̸= 0 then
C = C ∪ {{g, h} | g ∈ G};
G = G ∪ {h};

return G

11

Ideal Membership Problem

Let I = ⟨f1, f2⟩ = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Calculate a Gröbner basis G of I:
spol(f1, f2) = f1 − f2 = y − 2 =: f3, so G = {f1, f2, f3}.

spol(f1, f3) = yf1 − xf3 = 2x− y2 f2−→ y2 − 4
f3−→ 0

spol(f2, f3) = yf2 − xf3 = 2x− 2y
f1−→ 0

Gröbner(f1, f2) = G = {x− y, x− 2, y − 2}

xy + x− 3y
x−y−−−→ y2 − 2y

y−2−−→ 0

xy + x− 3y
x−2−−−→ y − 2

y−2−−→ 0

12

Ideal Membership Problem

Let I = ⟨f1, f2⟩ = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Calculate a Gröbner basis G of I:

spol(f1, f2) = f1 − f2 = y − 2 =: f3, so G = {f1, f2, f3}.

spol(f1, f3) = yf1 − xf3 = 2x− y2 f2−→ y2 − 4
f3−→ 0

spol(f2, f3) = yf2 − xf3 = 2x− 2y
f1−→ 0

Gröbner(f1, f2) = G = {x− y, x− 2, y − 2}

xy + x− 3y
x−y−−−→ y2 − 2y

y−2−−→ 0

xy + x− 3y
x−2−−−→ y − 2

y−2−−→ 0

12

Ideal Membership Problem

Let I = ⟨f1, f2⟩ = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Calculate a Gröbner basis G of I:
spol(f1, f2) = f1 − f2 = y − 2 =: f3, so G = {f1, f2, f3}.

spol(f1, f3) = yf1 − xf3 = 2x− y2 f2−→ y2 − 4
f3−→ 0

spol(f2, f3) = yf2 − xf3 = 2x− 2y
f1−→ 0

Gröbner(f1, f2) = G = {x− y, x− 2, y − 2}

xy + x− 3y
x−y−−−→ y2 − 2y

y−2−−→ 0

xy + x− 3y
x−2−−−→ y − 2

y−2−−→ 0

12

Ideal Membership Problem

Let I = ⟨f1, f2⟩ = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Calculate a Gröbner basis G of I:
spol(f1, f2) = f1 − f2 = y − 2 =: f3, so G = {f1, f2, f3}.

spol(f1, f3) = yf1 − xf3 = 2x− y2 f2−→ y2 − 4
f3−→ 0

spol(f2, f3) = yf2 − xf3 = 2x− 2y
f1−→ 0

Gröbner(f1, f2) = G = {x− y, x− 2, y − 2}

xy + x− 3y
x−y−−−→ y2 − 2y

y−2−−→ 0

xy + x− 3y
x−2−−−→ y − 2

y−2−−→ 0

12

Ideal Membership Problem

Let I = ⟨f1, f2⟩ = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Calculate a Gröbner basis G of I:
spol(f1, f2) = f1 − f2 = y − 2 =: f3, so G = {f1, f2, f3}.

spol(f1, f3) = yf1 − xf3 = 2x− y2 f2−→ y2 − 4
f3−→ 0

spol(f2, f3) = yf2 − xf3 = 2x− 2y
f1−→ 0

Gröbner(f1, f2) = G = {x− y, x− 2, y − 2}

xy + x− 3y
x−y−−−→ y2 − 2y

y−2−−→ 0

xy + x− 3y
x−2−−−→ y − 2

y−2−−→ 0

12

Ideal Membership Problem

Let I = ⟨f1, f2⟩ = ⟨x− y, x− 2⟩ ⊂ Q[x, y].

Is the polynomial f = xy + x− 3y ∈ I?

Calculate a Gröbner basis G of I:
spol(f1, f2) = f1 − f2 = y − 2 =: f3, so G = {f1, f2, f3}.

spol(f1, f3) = yf1 − xf3 = 2x− y2 f2−→ y2 − 4
f3−→ 0

spol(f2, f3) = yf2 − xf3 = 2x− 2y
f1−→ 0

Gröbner(f1, f2) = G = {x− y, x− 2, y − 2}

xy + x− 3y
x−y−−−→ y2 − 2y

y−2−−→ 0

xy + x− 3y
x−2−−−→ y − 2

y−2−−→ 0

12

How to derive a certificate for spol(fi, fj) and f
{f1,...,fs}−−−−−→ r?

13

Nullstellensatz Proofs

■ Provides list of co-factors a1, . . . , as.

■ Correctness is checked by
expanding linear combination
f =

∑
aifi.

■ Condensed proof format.

■ Not ideal for debugging.

Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, T., Pudlák, P.: Lower Bounds on Hilbert’s Nullstellensatz and Propositional
Proofs. In: Proc. London Math. Society. vol. s3-73, pp. 1-26 (1996)

14

Example

a c

b

G = { −b+ 1− a, b = ¬a
−c+ ab, c = a ∧ b = a ∧ ¬a
a2 − a, } a ∈ B

f = c

redG(f) = 0

f = c = a(−b+ 1− a)− 1(−c+ ab) + 1(a2 − a)

P = (a,−1, 1)

15

Polynomial Calculus*

Let G ⊆ R[X] and f ∈ R[X].

Proof: Sequence P = (p1, . . . pn), where each pk is obtained by one of the two rules:

Addition
pi pj
pi + pj

pi, pj appearing earlier in the proof
or are contained in G

Multiplication
pi
qpi

pi appearing earlier in the proof
or is contained in G

and q ∈ R[X] being arbitrary

If pn = f we have f ∈ ⟨G⟩.

Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: STOC. pp.
174–183. ACM (1996)

16

Example

a c

b

G = { −b+ 1− a, b = ¬a
−c+ ab, c = a ∧ b = a ∧ ¬a
a2 − a, } a ∈ B

f = c

redG(f) = 0

−b+ 1− a∗
−ab+ a− a2 a2 − a

+ −ab −c+ ab
+ −c∗ c

P = (−ab+ a− a2, −ab, −c, c)

17

Practical Algebraic Calculus

We translate the polynomial calculus into a more concrete proof format:

■ For correctness it is important to know how the polynomials in the proof where derived

■ Usually known → store this information

Practical Algebraic Calculus (PAC)

allows automated proof checking

18

Practical Algebraic Calculus - SC2 2018

a c

b

P = -b+1-a, b = ¬a
-c+a*b, c = a ∧ b = a ∧ ¬a
-a^2+a a = ⊥ ∨ a = ⊤

Target = c c = ⊥

* : -b+1-a, a, -a*b+a-a^2;
* : -a^2+a, -1, a^2-a;
+ : -a*b+a-a^2, a^2-a, -a*b;
+ : -a*b, -c+a*b, -c;
* : -c, -1, c;

D. Ritirc, A. Biere, M. Kauers, A Practical Polynomial Calculus for Arithmetic Circuit Verification, SC2-Workshop, 2018.

19

Proof Checking

A proof rule contains four components:

o : v, w, p;

Proof checking:

■ Connection property: v, w are given polynomials or conclusions pi of previous rules

■ Inference property: verify correctness of each rule, e.g. p = v + w for o = ” + ”

■ Target check: at least one pi is equal to f .

20

Proof Checking Algorithm

input G sequence of given polynomials
r1 · · · rk sequence of PAC proof rules

output “incorrect”, “correct-proof”, or “correct-refutation”

P0 ←G

for i ← 1 . . . k

let ri = (oi, vi, wi, pi)

case oi = +

if vi ∈ Pi−1 ∧ wi ∈ Pi−1 ∧ pi = vi + wi then Pi← append(Pi−1, pi)
else return “incorrect”

case oi = ∗
if vi ∈ Pi−1 ∧ pi = vi ∗ wi then Pi← append(Pi−1, pi)
else return “incorrect”

for i ← 1 . . . k

if pi = f then return “target-checked”
return “correct-proof”

21

Engineering

Use PolynomialReduce for reduction f
G−→ 0 and deriving co-factors h1, ..., hk

such that f = h1g1 + . . .+ hkgk.

First we generate a multiplication proof rule for each product higi.

∗ : g1, h1, h1g1; · · · ∗ : gk, hk, hkgk;

These products are now simply added together as follows:

+ : h1g1, h2g2, h1g1 + h2g2;

+ : h1g1 + h2g2, h3g3, h1g1 + h2g2 + h3g3;
...

+ : h1g1 + . . .+ hk−1gk−1, hkgk, f ;

22

Boolean Variables - FMCAD 2020

Handle Boolean-value constraints implicitly to reduce number of proof steps.

a c

b

P = -b+1-a,
-c+a*b,
-a^2+a

Spec = c

* : -b+1-a, a, -a*b;
+ : -a*b, -c+a*b, -c;
* : -c, -1, c;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.

23

Indices - FMCAD 2020

Introduce indices to reduce proof size.

a c

b

P = 1 -b+1-a;
2 -c+a*b;

Spec = c

3 * 1, a, -a*b;
4 + 3, 2, -c;
5 * 4, -1, c;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.

24

Deletion Rule - FMCAD 2020

Introduce a deletion rule to reduce the memory usage of the proof checker.

a c

b

P = 1 -b+1-a;
2 -c+a*b;

Spec = c

3 * 1, a, -a*b;
1 d;
4 + 3, 2, -c;
2 d;
3 d;
5 * 4, -1, c;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.

25

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

x ∨ y y ∨ z

x ∨ z

P = 1 x*y;
2 y*z-y-z+1;

Spec = -x*z+x

3 = f, -z+1;
4 * 3, y-1, -f*y+f-y*z+y+z-1;
5 + 2, 4, -f*y+f;
6 * 1, f, f*x*y;
7 * 5, x, -f*x*y+f*x;
8 + 6, 7, f*x;
9 * 3, x, -f*x-x*z+x;

10 + 8, 9, -x*z+x;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.26

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

xy (1− y)(1− z)

x(1− z)

P = 1 x*y;
2 y*z-y-z+1;

Spec = -x*z+x

3 = f, -z+1;
4 * 3, y-1, -f*y+f-y*z+y+z-1;
5 + 2, 4, -f*y+f;
6 * 1, f, f*x*y;
7 * 5, x, -f*x*y+f*x;
8 + 6, 7, f*x;
9 * 3, x, -f*x-x*z+x;

10 + 8, 9, -x*z+x;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.26

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

xy (1− y)(1− z)

x(1− z)

P = 1 x*y;
2 y*z-y-z+1;

Spec = -x*z+x

3 = f, -z+1;
4 * 3, y-1, -f*y+f-y*z+y+z-1;
5 + 2, 4, -f*y+f;

EXT(i, v, p) (X,P) ⇒ (X ∪ {v}, P (i 7→ −v + p))

provided that P (i) = ⊥ and v /∈ X and p ∈ Z[X]/⟨B(X)⟩,
and p2 − p ≡ 0 mod ⟨B(X)⟩.

3 = f, -z+1;
4 * 3, y-1, -f*y+f-y*z+y+z-1;
5 + 2, 4, -f*y+f;
6 * 1, f, f*x*y;
7 * 5, x, -f*x*y+f*x;
8 + 6, 7, f*x;
9 * 3, x, -f*x-x*z+x;

10 + 8, 9, -x*z+x;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.

26

Extension Rule - FMCAD 2020

The extension rule allows to add model preserving polynomials to the constraint set.

xy (1− y)(1− z)

x(1− z)

P = 1 x*y;
2 y*z-y-z+1;

Spec = -x*z+x

3 = f, -z+1;
4 * 3, y-1, -f*y+f-y*z+y+z-1;
5 + 2, 4, -f*y+f;
6 * 1, f, f*x*y;
7 * 5, x, -f*x*y+f*x;
8 + 6, 7, f*x;
9 * 3, x, -f*x-x*z+x;

10 + 8, 9, -x*z+x;

D. Kaufmann, M. Fleury, A. Biere, The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus, FMCAD, 2020.26

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.

a c

b

P = 1 -b+1-a;
2 -c+a*b;

Spec = c

LPAC simulates PAC

3 % 1*(a), -a*b;
1 d;
4 % 3*(1)+2*(1), -c;
2 d;
3 d;
5 % 4*(-1), c;

LPAC

3 % 1*(a)+2*(1), -c;
1 d;
2 d;
4 % 4*(-1), c;

LPAC simulates NSS

3 % 1*(-a)+2*(-1), -c;

D. Kaufmann, M. Fleury, A. Biere, M. Kauers, Practical Algebraic Calculus and Nullstellensatz with the Checkers Pacheck and

Pastèque and Nuss-Checker FMSD, 2022.

27

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.

a c

b

P = 1 -b+1-a;
2 -c+a*b;

Spec = c

LPAC simulates PAC

3 % 1*(a), -a*b;
1 d;
4 % 3*(1)+2*(1), -c;
2 d;
3 d;
5 % 4*(-1), c;

LPAC

3 % 1*(a)+2*(1), -c;
1 d;
2 d;
4 % 4*(-1), c;

LPAC simulates NSS

3 % 1*(-a)+2*(-1), -c;

D. Kaufmann, M. Fleury, A. Biere, M. Kauers, Practical Algebraic Calculus and Nullstellensatz with the Checkers Pacheck and

Pastèque and Nuss-Checker FMSD, 2022.

27

LPAC - FMSD 2022

Switch from explicit addition and multiplication rules to linear combinations.

a c

b

P = 1 -b+1-a;
2 -c+a*b;

Spec = c

LPAC simulates PAC

3 % 1*(a), -a*b;
1 d;
4 % 3*(1)+2*(1), -c;
2 d;
3 d;
5 % 4*(-1), c;

LPAC

3 % 1*(a)+2*(1), -c;
1 d;
2 d;
4 % 4*(-1), c;

LPAC simulates NSS

3 % 1*(-a)+2*(-1), -c;

D. Kaufmann, M. Fleury, A. Biere, M. Kauers, Practical Algebraic Calculus and Nullstellensatz with the Checkers Pacheck and

Pastèque and Nuss-Checker FMSD, 2022.
27

PACHECK2

■ supports new and old PAC format

■ PACHECK2 reads three input files <input>, <proof>, and <target>.

■ Verifies that the polynomial in <target> is contained in the ideal generated by the
polynomials in <input> using the rules provided in <proof>.

28

PASTÈQUE2

written by M. Fleury

Theorem Prover Isabelle/HOL

λ
→

∀
=Is

ab
el
le

β

α

Refinement Approach, relying on Isabelle’s Refinement Framework
■ abstract specification on ideals: specification in ideal
■ final step: executable checker

Isabelle’s Archive of Formal Proofs 8000 lines of code

29

Evaluation: Circuit Verification

PACHECK2

multiplier n

LPAC simulates PAC LPAC LPAC simulates NSS
steps sec MB steps sec MB steps sec MB

btor 128 0.3 5 94 0.1 2 94 1 2 98
btor 256 1.3 26 367 0.3 8 367 1 7 385
btor 512 5.2 149 1468 1.0 37 1496 1 35 1555

PASTÈQUE2

multiplier n

LPAC simulates PAC LPAC LPAC simulates NSS
steps sec MB steps sec MB steps sec MB

btor 128 0.3 14 1305 0.1 7 1305 1 53 2044
btor 256 1.3 67 3467 0.3 37 3816 1 762 8819
btor 512 5.2 351 14651 1.0 238 16173 1 14347 41712

30

LPAC with Proof Recycling – ongoing work

Let G = {x− 2y + 2, y − z − 1, a− b, b+ z, a+ b+ x+ 1}. We certify 1 ∈ ⟨G⟩:
g1 x-2y+2;
g2 y-z-1;
g3 a-b;
g4 b+z;
g5 a+b+x+1;

PNew (1, [(p1 v1-2*v2), (p2 v2-v3)], [(p3 % p1 + p2*(2), v1 - 2v3)], {p3})

PApply (1, [v1 = x, v2 = y-1, v3 = z], (g1, g2), {(g6, x - 2z)})
PApply (1, [v1 = a+b, v2 = b, v3 = -z],(g3, g4), {(g7, a + b + 2z)})

g8 % g5 + g6*(-1) + g7*(-1), 1;

D. Kaufmann and C. Hofstadler, Recycling Algebraic Proof Certificates, Submitted to SC2-Workshop, 2025.

31

Shorter Proofs

Clemens Hofstadler and Thibaut Verron,
Short proofs of ideal membership,
Journal of Symbolic Computation, Volume 125, 2024

■ Their application: Short proofs of ideal membership for noncommutative settings.

■ All results also apply to the commutative case!

32

A not so trivial example
Theorem (Djordjević, Dinčić ’09) A,B matrices such that AB exists.

B†(ABB†)† = (A†AB)†A† = B†A† ⇒ (AB)† = B†A†

Correctness of this theorem translates into

(ab)† − b†a† ∈ (f1, . . . , f44)Proof

. . .− (ab)†abb†f7(ab)†b(a†ab)†b(a†ab)†(abb†)†

− (ab)†abb†f5b(a†ab)†b(a†ab)†(abb†)†

− (ab)†af22a†ab(a†ab)†(abb†)† + . . .

How?

Another proof
(ab)† − b†a† = f21 − f10 + b†f14 − f12(ab)† − b†(abb†)†f11 + b†(abb†)†f15

+ (a†ab)†a†f9(ab)† − b∗f23((ab)†)∗(ab)† − f21ab(ab)† + f22ab(ab)†

− f39(a†)∗((ab)†)∗(ab)† + b†(abb†)†((abb†)†)∗(b†)∗f31 − b†f14d∗b∗(a†)∗

+ (a†ab)†a†abf12(ab)† − b†(abb†)†f15((ab)†)∗b∗(a†)∗

+ f20b∗(a†)∗((ab)†)∗(ab)† + (a†ab)†a†abb∗f23((ab)†)∗(ab)†

2

33

Shorter Proofs

Problem

Given f, f1, . . . , fs ∈ R[X], N ∈ N
Compute ai ∈ ⟨X⟩, ci ∈ R such that

f =

≤N∑
i=1

ciai · fi,

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for ai

Theorem The problem is decidable!

34

Shorter Proofs

Problem

Given f, f1, . . . , fs ∈ R[X], N ∈ N
Compute ai ∈ ⟨X⟩, ci ∈ R such that

f =

≤N∑
i=1

ciai · fi,

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for ai

Theorem The problem is decidable!

34

Shorter Proofs

Problem

Given f, f1, . . . , fs ∈ R[X], N ∈ N
Compute ai ∈ ⟨X⟩, ci ∈ R such that

f =

≤N∑
i=1

ciai · fi,

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for ai

Theorem The problem is decidable!

34

Shorter Proofs

Problem

Given f, f1, . . . , fs ∈ R[X], N ∈ N
Compute ai ∈ ⟨X⟩, ci ∈ R such that

f =

≤N∑
i=1

ciai · fi,

if existent, else return FAILED.

Question Is this problem decidable?

Difficulty: no degree bound for ai

Theorem The problem is decidable!

34

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in N steps

Theorem Let f, f1, . . . , fs ∈ R[X] and N ∈ N. If there exists a minimal representation

f =

≤N∑
i=1

ciai · fi,

then deg(aifi) ≤ D := (N + 1)maxdeg(f, f1, . . . , fs).

35

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in N steps

Theorem Let f, f1, . . . , fs ∈ R[X] and N ∈ N. If there exists a minimal representation

f =

≤N∑
i=1

ciai · fi,

then deg(aifi) ≤ D := (N + 1)max deg(f, f1, . . . , fs).

35

Minimal Representation

f has minimal representation with N terms iff f can be rewritten to 0 in N steps

Theorem Let f, f1, . . . , fs ∈ R[X] and N ∈ N. If there exists a minimal representation

f =

≤N∑
i=1

ciai · fi,

then deg(aifi) ≤ D := (N + 1)max deg(f, f1, . . . , fs).

35

A first algorithm

1. Make ansatz
f =

∑
i

ciai · fi

with unknown ci ∈ R and all ai,∈ ⟨X⟩ with deg(aifi) ≤ D.

2. Look for solution of the resulting linear system with ≤ N nonzero coordinates.

Observations
■ Step 1 yields huge but finite system

⇝ signatures to reduce search space

■ Step 2 is difficult but decidable

⇝ linear programming to approx. solution

■ The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
f =

∑
i

ciai · fi

with unknown ci ∈ R and all ai,∈ ⟨X⟩ with deg(aifi) ≤ D.

2. Look for solution of the resulting linear system with ≤ N nonzero coordinates.

Observations
■ Step 1 yields huge but finite system

⇝ signatures to reduce search space

■ Step 2 is difficult but decidable

⇝ linear programming to approx. solution

■ The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
f =

∑
i

ciai · fi

with unknown ci ∈ R and all ai,∈ ⟨X⟩ with deg(aifi) ≤ D.

2. Look for solution of the resulting linear system with ≤ N nonzero coordinates.

Observations
■ Step 1 yields huge but finite system

⇝ signatures to reduce search space

■ Step 2 is difficult but decidable

⇝ linear programming to approx. solution

■ The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
f =

∑
i

ciai · fi

with unknown ci ∈ R and all ai,∈ ⟨X⟩ with deg(aifi) ≤ D.

2. Look for solution of the resulting linear system with ≤ N nonzero coordinates.

Observations
■ Step 1 yields huge but finite system⇝ signatures to reduce search space

■ Step 2 is difficult but decidable

⇝ linear programming to approx. solution

■ The algorithm is not practical for non-trivial examples

36

A first algorithm

1. Make ansatz
f =

∑
i

ciai · fi

with unknown ci ∈ R and all ai,∈ ⟨X⟩ with deg(aifi) ≤ D.

2. Look for solution of the resulting linear system with ≤ N nonzero coordinates.

Observations
■ Step 1 yields huge but finite system⇝ signatures to reduce search space

■ Step 2 is difficult but decidable⇝ linear programming to approx. solution

■ The algorithm is not practical for non-trivial examples

36

CERTIFYING IDEAL MEMBERSHIP TESTS

Daniela Kaufmann

TU Wien, Austria

Dagstuhl Seminar 25231 "Certifying Algorithms for Automated Reasoning"
Schloss Dagstuhl, Wadern, Germany

June 2, 2025

A practical algorithm

Given f, f1, . . . , fs ∈ R[X], a representation α of f with degree ≤ D ∈ N
Compute an ℓ1-minimal representation of f with degree ≤ D

1. Compute Gröbner basis of Syz(f1, . . . , fs) up to degree D

2. Compute search space Bα = {a1f1, . . . , akfk} (sym. preprocessing)
3. Make ansatz for f using Bα and α

4. Compute ℓ1-minimal solution of the resulting system (linear programming)

Observations
■ Still exponential worst-case complexity, but better behaviour in practice

■ In general, no guarantee for shortest repr., but good behaviour in practice
■ Many examples are even totally unimodular⇝ algorithm is guaranteed to return a

shortest representation

1

A practical algorithm

Given f, f1, . . . , fs ∈ R[X], a representation α of f with degree ≤ D ∈ N
Compute an ℓ1-minimal representation of f with degree ≤ D

1. Compute Gröbner basis of Syz(f1, . . . , fs) up to degree D

2. Compute search space Bα = {a1f1, . . . , akfk} (sym. preprocessing)
3. Make ansatz for f using Bα and α

4. Compute ℓ1-minimal solution of the resulting system (linear programming)

Observations
■ Still exponential worst-case complexity, but better behaviour in practice

■ In general, no guarantee for shortest repr., but good behaviour in practice
■ Many examples are even totally unimodular⇝ algorithm is guaranteed to return a

shortest representation

1

A practical algorithm

Given f, f1, . . . , fs ∈ R[X], a representation α of f with degree ≤ D ∈ N
Compute an ℓ1-minimal representation of f with degree ≤ D

1. Compute Gröbner basis of Syz(f1, . . . , fs) up to degree D

2. Compute search space Bα = {a1f1, . . . , akfk} (sym. preprocessing)
3. Make ansatz for f using Bα and α

4. Compute ℓ1-minimal solution of the resulting system (linear programming)

Observations
■ Still exponential worst-case complexity, but better behaviour in practice

■ In general, no guarantee for shortest repr., but good behaviour in practice
■ Many examples are even totally unimodular⇝ algorithm is guaranteed to return a

shortest representation

1

A practical algorithm

Given f, f1, . . . , fs ∈ R[X], a representation α of f with degree ≤ D ∈ N
Compute an ℓ1-minimal representation of f with degree ≤ D

1. Compute Gröbner basis of Syz(f1, . . . , fs) up to degree D

2. Compute search space Bα = {a1f1, . . . , akfk} (sym. preprocessing)
3. Make ansatz for f using Bα and α

4. Compute ℓ1-minimal solution of the resulting system (linear programming)

Observations
■ Still exponential worst-case complexity, but better behaviour in practice

■ In general, no guarantee for shortest repr., but good behaviour in practice
■ Many examples are even totally unimodular⇝ algorithm is guaranteed to return a

shortest representation

1

A practical algorithm

Given f, f1, . . . , fs ∈ R[X], a representation α of f with degree ≤ D ∈ N
Compute an ℓ1-minimal representation of f with degree ≤ D

1. Compute Gröbner basis of Syz(f1, . . . , fs) up to degree D

2. Compute search space Bα = {a1f1, . . . , akfk} (sym. preprocessing)
3. Make ansatz for f using Bα and α

4. Compute ℓ1-minimal solution of the resulting system (linear programming)

Observations
■ Still exponential worst-case complexity, but better behaviour in practice

■ In general, no guarantee for shortest repr., but good behaviour in practice
■ Many examples are even totally unimodular⇝ algorithm is guaranteed to return a

shortest representation

1

