Recycling Algebraic Proof Certificates

Daniela Kaufmann®*, Clemens Hofstadler®*

ITU Wien, Vienna, Austria

?Johannes Kepler University, Linz, Austria

Abstract

Proof certificates can be used to validate the correctness of algebraic derivations. However, in practice, we
frequently observed that the exact same proof steps are repeated for different sets of variables, which leads to
unnecessarily large proofs. To overcome this issue we extend the existing Practical Algebraic Calculus with linear
combinations (LPAC) with two new proof rules that allow us to capture and reuse parts of the proof to derive a
more condensed proof certificate. We integrate these rules into the proof checker PAcHECK 2.0. Our experimental
results demonstrate that the proposed extension helps to reduce both proof size and verification time.

Keywords
Proof Logging, Algebraic Calculus, Recycling Proofs

Setting: Let X be a set of variables, K a field. Let G C K[X], f € K[X]. The goal is to derive a
proof certificate validating that f € (G).

Although our proposed idea of proof recycling works in this general setting, our main focus is on
applications where all variables X are Boolean. Recall that this can be modeled by adding, for each
variable x € X, the Boolean value polynomial z(z — 1) = 22 — x to G. Therefore, we assume that
B(X)={2?> —x |2 € X} C G. Our proof rules (and the existing rules of LPAC; see Figure 1) are
instantiated for this particular use case, but they can be easily adapted to the general setting.

Two proof systems are commonly studied for our application, polynomial calculus (PC) [1], and
Nullstellensatz (NSS) [2]. NSS proofs represent f as a linear combination of the polynomials in G.
However, if the expansion of the linear combination is not equal to f, it is unclear how to locate the
error in the proof. This limits the usefulness of a NSS proof for debugging. In contrast, proofs in PC
capture whether f can be derived from G using proof steps from ideal theory. However, PC as originally
defined [1] is not suitable for effective proof checking, because information of the origin of the proof
steps is missing.

The Practical Algebraic Calculus (PAC) [3] addressed this by explicitly encoding each polynomial
operation, enabling stepwise verification and hence error localization. In a later work [4], PC was
combined with NSS in the proof calculus LPAC (PAC with linear combinations) to yield, shorter, yet
traceable proofs.

However, in some applications, the same proof steps are repeated over and over again for different
variable instances. For example, in arithmetic circuit verification it is required to reason over structurally
equivalent building blocks, such as full- and half-adders, of the circuit. Until now (e.g., in [5]), all the
proof steps for these building blocks were explicitly recomputed from scratch, despite differing only in
variable names, rather than being cached and reused.

We now propose to extend LPAC with two new proof rules PATTERNNEW and PATTERNAPPLY, which
allow us to save a pattern in the proof that can be reinstated with different polynomials to recycle parts
of the proof.

SC% 2025: Satisfiability Checking and Symbolic Computation
*Corresponding author.
& daniela kaufmann@tuwien.ac.at (D. Kaufmann); clemens.hofstadler@jku.at (C. Hofstadler)

&7 https://danielakaufmann.at/ (D. Kaufmann); https://clemenshofstadler.com/ (C. Hofstadler)
® 0000-0002-5645-0292 (D. Kaufmann); 0000-0002-3025-0604 (C. Hofstadler)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:daniela.kaufmann@tuwien.ac.at
mailto:clemens.hofstadler@jku.at
https://danielakaufmann.at/
https://clemenshofstadler.com/
https://orcid.org/0000-0002-5645-0292
https://orcid.org/0000-0002-3025-0604
https://creativecommons.org/licenses/by/4.0/deed.en

Axiom (i, p) DELETION ()

(X,P) P@H)=L1 peK[X] (X,P)
(XUVar(p),P(i—p)) (X,P(1—1))

LinComB (’La (j17 .. 7.jn)7 (q17 s aqn)ap)

(va) P(]l)#lvvp(]n)#JﬂP(Z):J— p,ql,...,anK[X] ngl‘P(j1)+“‘+QH‘P(jn) m0d<B(X)>
(X, P(i>p))

ExT (7,0, q)

(X,P) P@H=L v¢X q¢eK[X] ¢*—¢€(B(X))
(XU{v},P(i>—v+q))

Figure 1: Existing Proof Rules of LPAC

1. LPAC

An LPAC proof certificate can be used to validate that a polynomial f € K[X] can be derived from a
given set of polynomials G C K[X] (= the proof axioms) using polynomial addition and multiplication.
The semantics of LPAC can be seen in Figure 1. A more detailed explanation including correctness
arguments is given in [4].

Let X denote a set of Boolean variables and let P be a sequence of polynomials, which can be accessed
via indices. An LPAC proof is a sequence of states (X, P), with the initial state ({}, []). At any state,
P will only contain polynomials that are either axioms or can be derived from polynomials already
contained in P using the inference rules of the calculus.

Using the Axiom rule, we add polynomials p to P. The DELETION rule allows us to remove polynomials
from P when they are no longer needed, which helps to save memory during checking. The LinComB
rule can be used to add polynomials to P that can be derived as a linear combination of polynomials
already stored in P. Using the ExT rule we can add polynomials to the proof, which can be used to
introduce placeholder variables v for Boolean expressions g.

Proof Checking: LPAC proofs can be checked using, e.g., PAcHECK 2.0 [4]. Proof checking is applied
on the fly. For instance, after parsing a LINComB proof step, PACHECK 2.0 checks whether all input
polynomials exist, calculates the linear combination of the given input, and compares it to the given
conclusion polynomial p of the LINCoMmB rule. Additionally, it is checked whether one of the conclusion
polynomials of a LINCOMB step is equal to the target f at any point in the proof.

2. Recycling Proof Steps

In the following, we introduce the new proof rules PATTERNNEW and PATTERNAPPLY to add and
instantiate proof patterns. In principle, these rules could be generalized and used to extend any
polynomial proof system, including those that do not work over Boolean variables. Here, we focus on
extending LPAC and instantiate the new rules to work for this particular proof system. For that, we
also extend an LPAC proof from (X, P) to (X, P, C), where C' denotes a sequence of patterns. Initially
C' = []. Note that C cannot be changed by any of the rules in Figure 1.

PATTERNNEW: A pattern is identified with a unique index ¢ that will be used in the PATTERNAPPLY rule
to identify the pattern. A pattern has three components: sequence of inputs I, sequence of proof steps S,
and set of outputs O.

The sequence of inputs represents the axioms of the pattern. The proof steps .S form a self-contained
proof fragment. In “Correct-LPAC-Proof(I, S)” it is checked whether the proof steps in .S can be derived

PATTERNNEW (7, 1, S, O)

(X,P,C) C(i)=L Correct-LPAC-Proof(I,S) OCConclusions(S) Vext=ExtensionVar(O)
(X’P>Cu(i71707‘/c}(t))

PATTERNAPPLY (4, Xoxt, @5 (15«5 Jm) {(k1,p1), - - oy (BnyDn)})

(_)(7 1:77 C) C(’L) 75 1 Xext g X Yv € C(Z)‘/ext : <p(v) € Xext
Yo € Var(C(4)) : p(v)? — ¢(v) € (B(X U Xext)) P(ji)#L,...,P(jm)# L C().I =¢ {P(j1),---, P(im)}
P(kl):J-77P(kn):J- p17~~-apn€K[XUcht] C(l)ozkﬂ {ply-..,pn}

Figure 2: New Proof Rules of LPAC

by the LPAC inference rules using the axioms given in I. The set of outputs O contains those conclusion
polynomials of the proof steps in S, which will be stored as output polynomials of the pattern.

We explicitly extract any extension variables Vet from the outputs O of the pattern that have been
added in the proof steps S. When applying the pattern, these variables have to be instantiated as fresh
variables. On the other hand, it is not necessary to store any internal extension variables of .S that are
not contained in any polynomial in O, since they are only used internally to derive the outputs O. They
are not needed for the application of the pattern.

After a pattern is checked for correctness, we only store I, O, and Ve in C. The proof steps .S are
discarded. On a practical note, since a pattern can be seen as a standalone LPAC proof, we are free to
(re-)use any variables and indices.

ParteErNAPpLY: The index ¢ refers to a pattern in C. The set Xy contains all extension variables that
will be added to the LPAC proof through the application of the pattern. These variables are not allowed
to be contained in the set of variables X of the current proof state (X, P, C).

The mapping ¢ connects the pattern C(7) to the LPAC proof P by mapping all variables (including
those in Vi) in C'(i) to polynomials over the variables X U Xy This mapping has to satisfy two
restrictions: First, it has to map the extension variables used in C'(7) to the new extension variables in
Xext, that is, for all v € Viyt, we must have ¢(v) € Xext. Moreover, ¢ has to comply with the Boolean
axioms in the following way: for each variable v in C(7), its image under ¢ must satisfy the condition
©(v)? — p(v) € (B(X U Xeyxt)). This restriction comes from the fact that all variables are assumed
Boolean in an LPAC proof and the Boolean axioms are used implicitly (see, for instance, the LINComB
rule in Figure 1). In general, when a proof system treats certain relations implicitly, the mapping ¢
has to be consistent with those relations. In contrast, for a proof system that does not use any implicit
relations, ¢ can map the variables from C'(7) to arbitrary polynomials.

The tuple (j1,...,jm) contains the indices to those polynomials of P that are used as inputs to
the pattern. We verify that these polynomials match the pattern’s inputs under the mapping ¢, de-
noted by =, in Figure 2. We do an analogous check for all the output polynomials p; in the set
{(k1,p1),. .., (kn,pn)}. If the pattern is correctly applied, we store the polynomials p; as correctly
derived polynomials in P, i.e., we set P(k;) — p;.

Proof Checking: For the PATTERNNEW rule, we have to apply the following checks during proof
checking:

(i) do we already have a pattern with index ¢;
(ii) do I and S form a correct standalone LPAC proof;
(iii) are all polynomials in O conclusion polynomials of proof steps in I or S.

For the PATTERNAPPLY rule, we have to apply the following checks:

(i) does pattern C'(7) exist;
(ii) are all variables in Xy fresh variables that are not contained in X;
(iii) does the mapping ¢ map the extension variables of the pattern to the fresh variables in Xeyt;
(iv) does the mapping ¢ comply with the Boolean axioms B(X U Xext);
(v) do the input polynomials I correspond to the input polynomials of C'(i) after the mapping ¢ is
applied;
(vi) do the output polynomials O correspond to the output polynomials of C'(7) after ¢ is applied.

3. Examples

We illustrate the new proof rules on two examples. In the first example we show how patterns can help
to reduce the size of the proof. In the second example we show how to treat extension variables in
proof patterns.

Example 1. LetG = {x+2y—2,—y—2+1,a+2b—2, —b—2z+1,a—x+1}. We use the PATTERNNEW
and PATTERNAPPLY rules to derive 1 € (G) in an LPAC proof. We use p; as indices for the proof steps inside
the pattern and l; as indices for the proof steps outside the pattern.

Axtom(ly, x+2y—2)
Axtom(ls, —y—2z+1)
Axtom(ls, a+2b—2)
Axiom(ly, —b—2z+1)
Axiom(ls, a—x+1)
PATTERNNEW (1, [(p1 vi —2v2), (p2 v2—w3)],
[LiNComB(p3, (p1,p2), (1.2), vi—2v3)], {ps})
ParTERNAPPLY (1, [}, [vi—x, vor 11—y, v3—=>2], (l1,l2), {(lsg, x—22)})
ParterNAprry (1, {}, [vi—a, vao—>1—=b, vs—=2z], (I3,ls), {(lz, a—2z)})
9 LiNnComB(lg, (Ils,lg,l7), (1,1,-1), 1)

AL AW N~

SN

The pattern created in this proof captures the derivation of a specific linear combination of two polyno-
mials: Starting from p1 = v1 — 2vy and p2 = vy — vs, defined over variables vy, va, v3, we can derive the
linear combination ps = p1 + 2py = v1 — 2v3. We then apply this pattern in two different ways.

First, we instantiate v1,v2,v3 by x, 1 — y, and z, respectively. Note that this substitution complies with
the Boolean axioms. For instance, ¢(v2)? — o(v2) = (1 —y)? — (1 —y) = y?> —y € (B({a,b,z,y, 2})).
Under this substitution, p; and pa reduce to the axioms ly and la, and the output polynomial p3 becomes
x — 2z. In the second application, we substitute vy, va, vs witha, 1 — b, and z, respectively. Then p; and
pa reduce to the axioms I3 and l4, and the output polynomial ps becomes a — 2z.

By using the pattern, we have to compute the linear combination p1 + 2py only once and can then reuse
it through instantiation in each application. In contrast, a classical LPAC proof would require computing
each linear combination Iy + 21y and I3 + 214 separately.

Example 2. In this example, we algebraically mimic the Boolean resolution rule. That is, from —x V -y
andy \V z, we derive —x V z. Algebraically, the two axioms can be encoded as G = {xy,yz —y — z + 1}.
The goal is to derive vz € (G U {z — (1 — 2)}), with z being a new variable representing z = 1 — z.

1 Axiom(ly, xy)
2 Axiom(ly, yz—y—2z+1)
3 PATTERNNEW (1, [(p1 viva), (p2 vavz—wve —w3+1)],
[ExT(ps, (w3), (1—w3)),
LINComB (ps, (p1,p2,p3), (w3,vi,v1ve —v1), viws)], {p3,pa})
4 PatterNAppry (1, {Z}), [vi—x, vory, vs—2z, ws— 2], (li,l2),
{(ls3, —z2+1—2), (4, 22)})

LPAC without Patterns LPAC with Patterns

Name Axioms || Steps | File | Mem | Time || Steps | # | Apply | max |S| | File | Mem | Time

(10%) || (10%) | (MB) | (MB) | (s) || (10%) (MB) | (MB) | (s)
abc 64 196 454 982 | 10.17 48 | 9 4032 46 439 913 | 9.61
abc-rsn 64 196 454 982 | 10.35 48 | 12 4033 65 439 913 | 9.94
abc-cmp 64 196 454 982 | 10.45 48 | 12 4033 46 439 913 | 9.90
sp-ar-rc 96 270 676 | 1377 | 15.86 107 | 18 6509 83 663 | 1315 | 14.87
sp-bd-rc 98 284 | 1130 | 2098 | 32.33 111 | 42 6520 87 | 1117 | 2038 | 29.45
sp-dt-rc 96 292 | 1789 | 3112 | 56.63 108 | 58 7082 84 | 1776 | 3056 | 55.75
Sp-0s-rc 99 289 | 1314 | 2380 | 38.62 112 | 52 6542 87 | 1300 | 2321 | 38.48
sp-ar-cl 108 2043 959 | 1867 | 25.98 1820 | 79 3999 421 924 | 1749 | 24.37

Table 1
Benchmark Results

4. Experimental Evaluation

We have extended PAcHECK 2.0 with the PATTERNNEW and PATTERNAPPLY rules and show the effect
of adding those rules on a small set of benchmarks that originate from multiplier verification. In that
setting, we prove that the circuit specification is contained in the ideal generated by the circuit encoding,.

Proof Generation: In our recent work on circuit verification [6], we extract linear relations from
subcircuits, which are then used for the ideal membership test. These subcircuits are defined syntactically.
Since circuits typically consist of repeated usage of the same building blocks, such as full- and half-
adders, we often identify the same subcircuits multiple times. To avoid redundant computations, we
started caching these subcircuits.

To detect isomorphic subcircuits, we map all gate variables of a subcircuit to a standardized set of
variables and check for syntactic equivalence. Using this approach, we are able to cache over 80% of
the identified subcircuits. For each computation within a subcircuit, we store a corresponding proof
pattern. Whenever a cached pattern is retrieved, we instantiate and apply the corresponding proof
pattern to avoid the need for re-computation.

In the following, we use a subset of the benchmarks from [6] to demonstrate the effect of using proof
patterns. All benchmarks are drawn from the experimental evaluations in [7, 6], and are available from
the artifact [8] of the paper [7].

Table 1 summarizes our results in two blocks: one for the original version of LPAC (“LPAC without
Patterns”), the second one with our two new proof rules (“LPAC with Patterns”). None of the proofs
contains EXT or DELETION rules. The second column lists the number of axioms, which is equal for
both approaches. The next four columns represent LPAC proofs without patterns. We list the number
of linear combination proof steps (“Steps”), the size of the proof file in MB (“File”), the used memory
in MB (“Mem”), and the time needed to check the proof (“Time”) in seconds. The next seven columns
show the results when our two new proof rules are added. We list the number of PATTERNNEW steps
(“#”), the total number of PATTERNAPPLY steps (“Apply”), and the maximal number of steps in a pattern
(“max |S]”).

It can be seen that we can significantly reduce the number of proof steps when using patterns and
we always improve on the file size of the proof and the memory and time used to check the proof.

Further improving the efficiency of proof checking is part of future work. In particular, we want to
investigate the effects of recently developed techniques for finding short proofs of ideal membership [9].

Acknowledgments

This research was supported by Austrian Science Fund (FWF) [10.55776/ESP666] and by the LIT Al Lab
funded by the state of Upper Austria.

References

[1]
(2]
(3]

(8]
[9]

M. Clegg, J. Edmonds, R. Impagliazzo, Using the Groebner Basis Algorithm to Find Proofs of
Unsatisfiability, in: STOC 1996, ACM, 1996, pp. 174-183.

P. Beame, R. Impagliazzo,]. Krajicek, T. Pitassi, P. Pudlak, Lower Bounds on Hilbert’s Nullstellensatz
and Propositional Proofs, in: Proc. London Math. Society, volume s3-73, 1996, pp. 1-26.

D. Ritirc, A. Biere, M. Kauers, A Practical Polynomial Calculus for Arithmetic Circuit Verification,
in: SC2 2018, CEUR-WS, 2018, pp. 61-76.

D. Kaufmann, M. Fleury, A. Biere, M. Kauers, Practical Algebraic Calculus and Nullstellensatz with
the Checkers Pacheck and Pastéeque and Nuss-Checker, Formal Methods Syst. Des. 64 (2022) 73-107.
d0i:10.1007/s10703-022-00391-x.

D. Kaufmann, A. Biere, AMulet 2.0 for Verifying Multiplier Circuits, in: TACAS 2021, volume 12652
of LNCS, Springer, 2021, pp. 357-364. doi:10.1007/978-3-030-72013-1_19.

C. Hofstadler, D. Kaufmann, Guess and Prove: A Hybrid Approach to Linear Polynomial Recovery
in Circuit Verification, in: CP 2025, LIPIcs, 2025. To appear.

D. Kaufmann, J. Berthomieu, Extracting Linear Relations from Grébner Bases for Formal Verification
of And-Inverter Graphs, in: TACAS 2025, volume 15696 of LNCS, Springer, 2025, pp. 355-374.
doi:10.1007/978-3-031-90643-5_109.

D. Kaufmann, J. Berthomieu, MultiLinG — Extracting Linear Relations from Grébner Bases for
Formal Verification of And- Inverter Graphs (Artifact) , 2025. doi:10.5281/zenodo. 14610365.
C. Hofstadler, T. Verron, Short proofs of ideal membership, J. Symbolic Comput. 125 (2024) 102325.
doi:10.1016/j.jsc.2024.102325.

http://dx.doi.org/10.1007/s10703-022-00391-x
http://dx.doi.org/10.1007/978-3-030-72013-1_19
http://dx.doi.org/10.1007/978-3-031-90643-5_19
http://dx.doi.org/10.5281/zenodo.14610365
http://dx.doi.org/10.1016/j.jsc.2024.102325

	1 LPAC
	2 Recycling Proof Steps
	3 Examples
	4 Experimental Evaluation

