
Guess and Prove: A Hybrid Approach to Linear1

Polynomial Recovery in Circuit Verification2

Clemens Hofstadler #3

Johannes Kepler University, Linz, Austria4

Daniela Kaufmann #5

TU Wien, Vienna, Austria6

Abstract7

Formal verification of arithmetic circuits using computer algebra has been shown to be highly8

successful. The circuit is encoded as a system of polynomials, which automatically generates a9

lexicographic Gröbner basis. Correctness is then verified by computing the polynomial remainder of10

the specification. To optimize the remainder computation, prior work extracts linear polynomials.11

However, this required recomputing a Gröbner basis with respect to a degree-compatible order.12

In this paper, we show that this computationally expensive step is unnecessary and propose13

a novel hybrid verification approach that combines an FGLM-style linearization technique with a14

guess-and-prove method using SAT solving to derive the linear relations directly from lexicographic15

Gröbner bases. We enhance our approach using caching techniques and propagating vanishing16

monomials. Our experimental results demonstrate that our method significantly outperforms previous17

linearization techniques.18

2012 ACM Subject Classification Theory of Computation → Automated Reasoning19

Keywords and phrases Computer Algebra, FGLM, And-Inverter Graphs, Hardware Verification20

Digital Object Identifier 10.4230/LIPIcs.CP.2025.2321

Supplementary Material Tool22

TalisMan (Source Code): https://github.com/d-kfmnn/talisman/tree/be8187d23

Funding Clemens Hofstadler : LIT AI Lab funded by the state of Upper Austria24

Daniela Kaufmann: Austrian Science Fund (FWF) [10.55776/ESP666]25

Acknowledgements We thank Jérémy Berthomieu and the reviewers for insightful comments.26

1 Introduction27

Computer algebra-based formal verification techniques have proven to be highly effective in28

verifying gate-level arithmetic circuits. As digital systems become more complex, ensuring29

the accuracy of arithmetic circuits is essential, particularly in safety-critical fields like crypto-30

graphy and signal processing, where even minor errors can lead to significant consequences.31

Formal verification approaches on the word-level based on theorem provers [24] or computer32

algebra [12,14,16,17], particularly those leveraging Gröbner bases [4], have demonstrated33

significant advancements in recent years.34

These methods encode circuits given as and-inverter graphs (AIGs) [18] as polynomial35

systems where the coefficients are integers and the variables represent Boolean values. The36

terms are sorted according to a reverse topological term order [19]. This ensures that the37

output variable of a gate precedes its input variables, which results in an encoding where all38

the leading terms are disjoint. Hence, the set of gate polynomials automatically generates a39

Gröbner basis with respect to a lexicographic term order. This fact admits verification to be40

performed by simply computing the remainder of the specification polynomial modulo the41

Gröbner basis. The circuit is correct if and only if the final remainder is zero [15].42

© Clemens Hofstadler and Daniela Kaufmann;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clemens.hofstadler@jku.at
https://orcid.org/0000-0002-3025-0604
mailto:daniela.kaufmann@tuwien.ac.at
https://orcid.org/0000-0002-5645-0292
https://doi.org/10.4230/LIPIcs.CP.2025.23
https://github.com/d-kfmnn/talisman/tree/be8187d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Guess and Prove

However, a major bottleneck of using a lexicographic term order is the significant growth43

of intermediate reduction results. This phenomenon, known as monomial blow-up, occurs44

because the tails of the polynomials in the lexicographic Gröbner basis have higher degrees45

than their leading terms, and can easily lead to intermediate reduction results with millions46

of monomials [20]. To address this challenge, various preprocessing and rewriting algorithms47

have been developed, which syntactically or semantically analyze the input circuit to remove48

redundant information and choose a suitable reduction order.49

Several advanced reduction engines that use a lexicographic order have been developed,50

including DynPhaseOrderOpt [16], DyPoSub [21], and AMulet2 [13,14], along with51

its variant TeluMA [11]. The work in [13,14] employs SAT solving to rewrite parts of the52

multiplier before applying an incremental column-wise verification algorithm. A subsequent53

refinement in [11] eliminated the external SAT solver by using a sophisticated algebraic54

encoding that includes polarities of literals. In [21], a dynamic rewriting approach is used55

that determines the reduction order on-the-fly and backtracks if the size of the intermediate56

reductions exceeds a predefined threshold. Building on this, [16] introduced an improved57

method that incorporates mixed signals into the encoding.58

Recent work [12] diverges from the lexicographic order and opts instead for a de-59

gree-compatible order to ensure that the degree of intermediate reduction results cannot60

increase during reduction. By first linearizing the specification polynomial, the entire re-61

duction is restricted to linear polynomials. However, this approach requires extracting62

linear polynomials from the circuit, which is not straightforward. The authors proposed63

an on-the-fly technique that identifies subcircuits and computes degree-compatible Gröbner64

bases only for them. The required linear polynomials for reduction are supposed to be65

contained in the individually computed Gröbner bases.66

Despite its innovation, the approach of [12] has notable limitations. First, it disregards67

that the polynomials already form a lexicographic Gröbner basis, thereby missing important68

structural advantages. Second, the method relies on an off-the-shelf computer algebra69

system (CAS), which requires explicitly encoding that all variables are Boolean, missing70

out on optimizations provided by modified polynomial operations. Third, whenever the71

initial subcircuit selection is inadequate, the subcircuit must be iteratively expanded, leading72

to repeated incremental Gröbner basis computations. Since CASs cannot recognize that73

parts of the input already generate a partial Gröbner basis, expensive computations must be74

repeated. Our work aims to address these shortcomings.75

In this work, we introduce a novel method for extracting linear polynomials from sub-76

circuits. Our hybrid approach combines an FGLM-based linear extraction algorithm with a77

guess-and-prove-style linearization technique.78

In the FGLM-based algorithm, we initially compute the normal forms of single variables79

with respect to the lexicographic Gröbner basis. The linear polynomials are then recovered by80

determining the kernel of the corresponding coefficient matrix, which ensures that the linear81

extractions are proven to be correct. This algorithm can be considered as the first steps of82

the change-of-order FGLM-algorithm [8] for converting a Gröbner basis w.r.t. one term order83

into one for a different order. The guess-and-prove linearization approach involves sampling84

input values for the subcircuit. By solving a linear system of equations generated from these85

samples, we can identify potentially valid linear polynomials. We prove the correctness of86

the guessed polynomials using satisfiability (SAT) solving. To repair incorrect guesses, we87

exploit information obtained from the SAT solving process.88

Despite taking advantage of properties that are characteristic for circuit verification, we89

highlight that our methods are not restricted to this application and can be used in any90

C. Hofstadler and D. Kaufmann 23:3

context that meets these characteristics. Therefore, we introduce the FGLM and guess-and-91

prove algorithms in a general setting in Section 3, before discussing how to specialize them92

for circuit verification in Section 4.93

We further enhance our method by reusing computations for isomorphic subcircuits, and94

by generating and propagating vanishing monomials, see Section 4.1. We implement our95

techniques in a new tool, called TalisMan. Our experimental evaluation (Section 5) shows96

that we significantly outperform existing linearization techniques.97

2 Preliminaries98

In Section 2.1, we recall basic concepts about polynomials and Gröbner bases that will be99

needed for the rest of this work. For further information, we refer to the great introductory100

books [5,6], which also served as basis for our presentation. Section 2.2 introduces AIGs and101

how they can be encoded into polynomials.102

2.1 Polynomials and Gröbner Bases103

Fix a finite set X = {x1, . . . , xn} of indeterminates and let K be a field.104

▶ Definition 1 (Monomials). A monomial (in X) is a product of the form xα1
1 . . . xαn

n105

with exponents α1, . . . , αn ∈ N. The set of all monomials in X is denoted by [X]. The106

(total) degree deg(m) of a monomial m = xα1
1 . . . xαn

n ∈ [X] is the sum of exponents, i.e.,107

deg(m) = α1 + · · · + αn.108

▶ Definition 2 (Polynomials). A polynomial f (over K) is a finite K-linear combina-109

tion of monomials, that is, f = c1m1 + · · · + csms, with coefficients c1, . . . , cs ∈ K and110

m1, . . . , ms ∈ [X]. The set of all polynomials is denoted by K[X] = K[x1, . . . , xn]. A111

polynomial f is linear if it is of the form f = c0 + c1x1 + · · · + cnxn with c0, . . . , cn ∈ K.112

For a polynomial f = c1m1 + · · · + csms ∈ K[X], we call the product cimi a term of f ,113

for i = 1, . . . s. In this work, we consider all polynomials to be in canonical form, which114

means that terms with equal monomials are merged by adding their coefficients and terms115

with coefficient zero are omitted. Furthermore, as we will only consider polynomial equations116

with right hand side zero, we will also write “f” instead of “f = 0”.117

Many algebraic operations (such as division) require the terms within a polynomial to be118

sorted. This is achieved by a monomial order.119

▶ Definition 3 (Monomial Order). A total order ≺ on [X] is a monomial order if it satisfies:120

1. m1 ≺ m2 implies m · m1 ≺ m · m2 for all m, m1, m2 ∈ [X];121

2. every nonempty subset of [X] has a smallest element;122

▶ Example 4. We list two classical examples of monomial orders. Let m1 = xα1
1 . . . xαn

n and123

m2 = xβ1
1 . . . xβn

n be monomials.124

1. Lexicographic order : We say that m1 ≺lex m2 if αi < βi for the smallest index i ∈125

{1, . . . , n} where αi ̸= βi.126

2. Degree lexicographic order : We say that m1 ≺dlex m2 if deg(m1) < deg(m2) or if127

deg(m1) = deg(m2) and m1 ≺lex m2.128

The degree lexicographic order is an instance of a degree-compatible (or graded) order.129

A monomial order ≺ is degree-compatible if deg(m1) < deg(m2) implies m1 ≺ m2 for all130

monomials m1, m2 ∈ [X].131

CP 2025

23:4 Guess and Prove

With respect to a fixed monomial order ≺, we can identify the unique maximal monomial132

in each nonzero polynomial f ∈ K[X]. This monomial is called the leading monomial of f133

and denoted by lm(f). The coefficient of lm(f) is called the leading coefficient of f , denoted134

by lc(f), and the term lc(f) lm(f) is called the leading term of f , denoted by lt(f). The tail135

of f is tail(f) = f − lt(f).136

▶ Definition 5 (Ideal). A nonempty subset I ⊆ K[X] is an ideal if it is closed under addition,137

that is, f + g ∈ I for all f, g ∈ I, and if it is closed under multiplication by arbitrary138

polynomials, that is, hf ∈ I for all f ∈ I and h ∈ K[X].139

A set of polynomials F = {f1, . . . , fr} ⊆ K[X] can be considered as a system of equations140

f1 = · · · = fr = 0. The set of all polynomials h for which the equation h = 0 can141

be derived algebraically from this system (by adding equations and by multiplying an142

equation by a polynomial) forms an ideal, which is denoted by ⟨F ⟩. It is given explicitly by143

⟨F ⟩ = {h1f1 + · · · + hrfr | h1, . . . , hr ∈ K[X]}.144

A central result in (computational) algebra, known as Hilbert’s Basis Theorem [5,145

Thm. 2.5.4], says that every ideal I ⊆ K[X] can be written as I = ⟨F ⟩ for some finite146

set F ⊆ K[X]. The set F is called a basis of I and we say that I is generated by F .147

In general, an ideal has many bases. Given an arbitrary basis F of an ideal, it is a difficult148

question to determine whether an equation h = 0 can be derived from the system induced149

by F , or in algebraic terms, to determine whether h ∈ ⟨F ⟩. The latter problem is known150

as the ideal membership problem. In principle, it can be solved by repeatedly dividing h by151

the elements in the basis F until a remainder is obtained that cannot be divided further.152

See [5, Thm. 2.3.3] for a precise description of this division process. However, this remainder153

is typically not unique but it depends on the order of divisions. Only for certain particular154

bases of an ideal a unique remainder can be obtained. These bases are called Gröbner bases155

and they can be used to solve the ideal membership problem. The following definition156

depends on a monomial order; we assume that some order ≺ has been fixed.157

▶ Definition 6 (Gröbner Basis). A basis G of an ideal I ⊆ K[X] is a Gröbner basis of I158

(w.r.t. ≺) if every polynomial f ∈ K[X] has a unique remainder under division by G. This159

unique remainder is denoted by NFG(f) and is also called the normal form of f .160

An equivalent characterisation of a Gröbner basis G of I is that f ∈ I if and only if161

NFG(f) = 0, see [5, Cor. 3.6.2]. Moreover, it can be shown that every ideal has a finite162

Gröbner basis. A Gröbner basis of an ideal I can be computed starting from any finite163

basis of I by a completion procedure that can be considered as an algebraic analogue of the164

Knuth–Bendix completion algorithm. This completion procedure is known as Buchberger’s165

algorithm [4] and, in contrast to Knuth–Bendix, is guaranteed to terminate for any input.166

A polynomial f ∈ K[X] = K[x1, . . . , xn] vanishes on a set of points P ⊆ Kn if167

f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ P . For an ideal I ⊆ K[X], the set of all points168

on which all polynomials in I vanish is called the (algebraic) variety of I, denoted by V (I),169

i.e., V (I) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0 for all f ∈ I}. If V (I) is finite, then I is170

called zero-dimensional.171

2.2 Polynomial Encodings of And-Inverter Graphs172

An AIG [18] is a directed acyclic graph that can be used to represent Boolean functions173

and logic circuits in a compact way. The nodes (also called gates) in an AIG correspond to174

logical conjunction. The edges represent signal propagation, with optional markers indicating175

negation. The primary inputs of the AIG represent Boolean variables.176

C. Hofstadler and D. Kaufmann 23:5

Gate Polynomials G(C) Logical constraint
s3 − g24 s3 = g24
s2 − g28 s2 = g28
g28 − g26g24 + g26 + g24 − 1 g28 = ¬g26 ∧ ¬g24
g26 − g22g16 + g22 + g16 − 1 g26 = ¬g22 ∧ ¬g16
g24 − g22g16 g24 = g22 ∧ g16
g22 − b1a1 g22 = b1 ∧ a1
s1 − g20 s1 = g20
g20 − g18g16 + g18 + g16 − 1 g20 = ¬g18 ∧ ¬g16
g18 − g14g12 + g14 + g12 − 1 g18 = ¬g14 ∧ ¬g12
g16 − g14g12 g16 = g14 ∧ g12
g14 − b1a0 g14 = b1 ∧ a0
g12 − b0a1 g12 = b0 ∧ a1
s0 − g10 s0 = g10
g10 − b0a0 g10 = b0 ∧ a0

B(C): a2
1 − a1, a2

0 − a0, b2
1 − b1, b2

0 − b0

Spec S : 8s3 + 4s2 + 2s1 + s0 − 4a1b1 − 2a1b0 − 2a0b1 − a0b0

2

a[0]

4

b[0]

6

a[1]

8

b[1]

10 1214

1618

20

22

2426

28

s[0]

s[1]

s[2]

s[3]

Figure 1 AIG and polynomial encoding of a 2-bit multiplier in the ring Q[X].

▶ Definition 7 (Specification). The specification of an AIG is a polynomial S ∈ K[X] that177

relates the outputs of an AIG to its primary inputs.178

While the AIG performs logical operations on Boolean variables, the specification is not179

confined to the Boolean ring B[X]. Instead, it can extend to alternative coefficient domains,180

such as Q[X], depending on the underlying AIG.181

▶ Definition 8 (Gate Polynomials G(C)). We map ⊤ 7→ 1 and ⊥ 7→ 0 to derive the relations182

a ∧ b ∼= ab and ¬a ∼= 1 − a between logic and algebra. Let g be an AIG node with inputs a, b:183

Logical constraint Gate polynomial
g = a ∧ b ⇒ g − ab

g = ¬a ∧ b ⇒ g − (1 − a)b = g + ab − b

g = a ∧ ¬b ⇒ g − a(1 − b) = g + ab − a

g = ¬a ∧ ¬b ⇒ g − (1 − a)(1 − b) = g − ab + b + a − 1

184

For a given AIG C, we collect all its gate polynomials in the set G(C).185

Since the specification is not restricted to the Boolean ring, we need to add further186

polynomials that restrict the variables to the Boolean domain.187

▶ Definition 9 (Boolean Value Polynomials B(C)). For every primary input ai of the AIG188

we define a Boolean value polynomial ai(ai − 1) = a2
i − ai = 0 that encodes that the variable189

can only take the values 0 and 1. Let B(C) denote the set of Boolean value polynomials.190

It suffices to define the Boolean value polynomials only for the primary inputs, as they191

propagate, i.e., ∀xi ∈ X : x2
i − xi ∈ ⟨G(C) ∪ B(C)⟩, with X being the set of all output, gate,192

and input variables [15].193

▶ Example 10. Figure 1 shows an AIG representing a 2-bit multiplier and its correspond-194

ing polynomial encoding. We denote the primary inputs by a0, a1, b0, b1 and outputs by195

s0, s1, s2, s3. The internal nodes are denoted by gi, where i corresponds to the respective196

AIG node. The specification S expresses that the weighted sum of output bits (= output197

bit-vector) is equal to the product of the weighted sum of input bits (= input bit-vectors).198

The correctness of the AIG can be shown by deriving that S is implied by the polynomial199

encoding, which algebraically means that we want to show that S ∈ ⟨G(C) ∪ B(C)⟩ [15].200

CP 2025

23:6 Guess and Prove

Since the terms are sorted lexicographically according to a reverse topological variable order,201

all leading terms are disjoint. Hence the polynomials automatically generate a Gröbner basis.202

Thus, verification can be performed by computing the remainder of S modulo G(C) ∪ B(C).203

The circuit is correct if and only if the final remainder is zero [15].204

3 Finding Linear Polynomials in Ideals205

A key step in our approach to circuit verification is identifying linear polynomials in a given206

ideal. In this section, we propose two methods that recover linear polynomials by exploiting207

essential properties of the ideals in our application.208

We highlight that, while these techniques are designed to take advantage of these properties,209

they are not specific to our application and can be used in any context that meets our210

assumptions about the ideals involved. Formally, we consider the following problem over a211

(computable) field K:212

Given: an ideal I ⊆ K[X]213

Compute: the set L(I) of all linear polynomials in I214

Note that L(I) is non-empty because it always contains the zero polynomial. Moreover, if215

p, q ∈ L(I), then so are p + q and cp for every c ∈ K. Thus, we obtain the following result.216

▶ Lemma 11. The set L(I) of all linear polynomials of an ideal I ⊆ K[X] forms a finite-217

dimensional vector space over K of dimension at most |X| + 1.218

Proof. We have already seen that L(I) is a vector space. The dimension result follows from219

the fact that L(I) is a subspace of the (|X| + 1)-dimensional vector space L(K[X]), which220

has the basis X ∪ {1}. ◀221

By “computing” the set L(I), we mean determining a K-vector space basis. In the general222

case, when the ideal I is given by an arbitrary basis without additional structural properties,223

the only approach we are aware of to obtain this basis for L(I) is by computing a Gröbner224

basis of I w.r.t. a degree-compatible monomial order. By [12, Thm. 1], such a Gröbner basis225

contains the desired basis as a subset. This was also the approach used in [12]. However, in226

the application of circuit verification, the given basis has a lot more structure:227

1. It forms a Gröbner basis w.r.t. a lexicographic monomial order.228

2. The lexicographic Gröbner basis enables easy computation (of a subset) of V (I).229

A naïve computation of a Gröbner basis w.r.t. a degree-compatible order using a black-box230

computation completely ignores this existing structure.231

3.1 FGLM-style Linearization232

While the lexicographic order is not degree-compatible, we can still exploit the fact that233

we already have a Gröbner basis w.r.t. this order when computing a basis of L(I). More234

generally, the method presented in this section works with arbitrary Gröbner bases. Thus,235

we consider the following refined problem:236

Given: an ideal I ⊆ K[X] and a Gröbner basis G of I237

Compute: the set L(I) of all linear polynomials in I238

C. Hofstadler and D. Kaufmann 23:7

Algorithm 1 FGLM-style-Linearization
Input : Gröbner basis G of an ideal I ⊆ K[X] = K[x1, . . . , xn]
Output : a K-vector space basis L of L(I)

1 Compute the normal forms NFG(1), NFG(x1), . . . , NFG(xn);
2 Set up the coefficient matrix

A←

 | | |
NFG(1) NFG(x1) · · · NFG(xn)
| | |


3 b1, . . . , bk ← a basis of ker(A);
4 return L← {bi,0 + bi,1x1 + · · ·+ bi,nxn | bi = (bi,0, bi,1, . . . , bi,n), i = 1, . . . , k};

Our method is based on the classical fact that if G is a Gröbner basis of an ideal (w.r.t. any239

monomial order), then the normal form map f 7→ NFG(f) is linear, i.e., NFG(cf + dg) =240

c NFG(f)+d NFG(g), for all c, d ∈ K and f, g ∈ K[X], cf. [5, Ex. 2.6.13]. We use this linearity241

to compute a basis of L(I).242

▶ Lemma 12. Let G be a Gröbner basis of an ideal I ⊆ K[X] = K[x1, . . . , xn]. A linear
polynomial f = c0 + c1x1 + · · · + cnxn with c0, . . . , cn ∈ K is contained in I if and only if

c0 NFG(1) + c1 NFG(x1) + · · · + cn NFG(xn) = 0.

Proof. Follows from the linearity of the map f 7→ NFG(f) and the fact that f ∈ I if and243

only if NFG(f) = 0. ◀244

Lemma 12 outlines a procedure for computing a basis of L(I): First, compute the normal245

forms NFG(1), NFG(x1), . . . , NFG(xn) using the Gröbner basis G. Then find all K-linear246

relations between these normal forms, which can be achieved as follows: Form the coefficient247

matrix A whose columns contain the coefficients of NFG(1), NFG(x1), . . . , NFG(xn). More248

precisely, we assign to each row Ai of A a monomial mi that appears in the normal forms.249

The entry Ai,j is then given by the coefficient of mi in NFG(xj) (with x0 = 1). With250

this, a basis of the kernel ker(A) of A yields a basis of L(I) by translating any basis vector251

c = (c0, c1, . . . , cn) ∈ ker(A) into the linear polynomial c0 + c1x1 + · · · + cnxn ∈ L(I).252

Recall that a basis of ker(A) can be computed by Gaussian elimination, which has a cubic253

computational complexity in the matrix size; see, e.g., [23, Sec. 7.1]. These steps are254

summarized in Algorithm 1.255

▶ Proposition 13. Algorithm 1 terminates and is correct.256

Proof. Termination is clear. For correctness, note that Lemma 12 implies that there is a257

one-to-one correspondence between linear polynomials c0 + c1x1 + · · · + cnxn ∈ L(I) and258

vectors (c0, c1, . . . , cn) ∈ ker(A). Thus, any basis of the latter can be translated into a basis259

of the former (and vice versa). ◀260

▶ Example 14. Consider the ideal I ⊆ Q[a, b, g1, g2, g3, g4] generated by the four polynomials261

g1 − ab, g2 − (1 − a)(1 − b), g3 − a(1 − b), g4 − (1 − g1)(1 − g2),262

as well as by the two Boolean value polynomials a2 − a and b2 − b. These six polynomials263

form a Gröbner basis of I w.r.t. the lexicographic order where a ≺ b ≺ g1 ≺ g2 ≺ g3 ≺ g4.264

CP 2025

23:8 Guess and Prove

We use Algorithm 1 to compute a Q-vector space basis of L(I). To this end, we compute265

the normal forms of all six variables and of 1 w.r.t. the given Gröbner basis and set up the266

corresponding coefficient matrix A. This yields267

A =

NFG(1) NFG(a) NFG(b) NFG(g1) NFG(g2) NFG(g3) NFG(g4)
1 0 0 0 1 0 0 1

0 1 0 0 −1 1 1 a

0 0 1 0 −1 0 1 b

0 0 0 1 1 −1 −2 ab

268

The kernel of A is generated by the three vectors (0, −1, −1, 2, 0, 0, 1), (0, −1, 0, 1, 0, 1, 0), and269

(−1, 1, 1, −1, 1, 0, 0). Thus, a basis of L(I) is given by the three linear polynomials270

g4 + 2g1 − a − b, g3 + g1 − a, g2 − g1 + a + b − 1.271

We call Algorithm 1 “FGLM-style linearization” because it can be considered as the first272

steps of the change-of-order FGLM-algorithm [8] for converting a Gröbner basis G w.r.t. one273

monomial order into another one G′ for a different order.274

Typically, the FGLM-algorithm is used to convert a degree-compatible Gröbner basis into275

one for a lexicographic order, because the former are easier to compute while the latter are276

better suited for solving polynomial systems. Nevertheless, the FGLM-algorithm can be used277

to transition between any monomial orders as long as the underlying ideal is zero-dimensional.278

Algorithm 1 can be considered as the first steps of an FGLM-computation for converting a279

Gröbner basis into a Gröbner basis w.r.t. a degree-compatible order. We note that, while280

FGLM is only applicable to zero-dimensional ideals, Algorithm 1 works for arbitrary ideals.281

The complexity of Algorithm 1 is essentially cubic in the size of the computed normal forms282

NFG(1), NFG(x1), . . . , NFG(xn), which could be exponential in the worst case, cf. [10, Ex. 5.1].283

In our application, we found that Algorithm 1 works well for ideals generated by several dozen284

polynomials in a few dozen variables. However, for dealing with more involved (sub)circuits,285

we have to handle ideals spanned by several thousand polynomials in several thousand286

variables. For such ideals, the normal forms consist of tens of millions of terms and are too287

large to compute. Therefore, in these cases, we switch to a different method, exploiting the288

fact that we can cheaply compute many points in the variety V (I) of the considered ideals.289

3.2 Guess-and-Prove Linearization290

In cases where we do not have access to a Gröbner basis or when computing the normal forms291

required in Algorithm 1 is prohibitively expensive, we can employ a different strategy: When292

(sufficiently many) points in the variety V (I) can be computed, we can guess candidates293

for linear polynomials by interpolation and then verify their correctness a posteriori. Our294

approach is based on the following basic result.295

▶ Lemma 15. Let I ⊆ K[X] be an ideal and let P ⊆ V (I). If S ⊆ K[X] is the set of all296

linear polynomials that vanish on P , then L(I) ⊆ S.297

Proof. Follows from the fact that all polynomials in I vanish on all points in V (I). ◀298

Lemma 15 provides a necessary condition for determining whether an ideal I contains any299

nonzero linear polynomials. Given a set of points P ⊆ V (I), we can compute a K-vector space300

basis for the set S by solving a system of linear equations (see lines 3 – 6 in Algorithm 2). If301

this basis is empty, it follows that L(I) = {0}. More precisely, if the computed basis does302

C. Hofstadler and D. Kaufmann 23:9

Algorithm 2 Guess-And-Prove-style Linearization
Input : a zero-dimensional radical ideal I ⊆ K[X] over an algebraically closed field K,

methods sample and verify as specified in Sec. 3.2, and a positive integer
N ∈ N>0

Output : a K-vector space basis L of L(I)
1 A← empty matrix;
2 while true do
3 p1, . . . , pN ← use sample(I) to compute N points in V (I);
4 Prepend the coordinate 1 to each pi and add these vectors as new rows to A, i.e.,

A←


A

1 — p1 —
...

...
1 — pN —


5 b1, . . . , bk ← a basis of ker(A);
6 L← {bi,0 + bi,1x1 + · · ·+ bi,nxn | bi = (bi,0, bi,1, . . . , bi,n), i = 1, . . . , k};
7 if ∀f ∈ L : verify(f) then
8 return L;

not include a linear polynomial involving a given variable x ∈ X, then we can conclude that303

neither does L(I).304

Obviously, the set S can contain wrong guesses and be (a lot) larger than L(I). To turn305

Lemma 15 into an actual algorithm for computing a basis of L(I), we have to make some306

additional assumptions:307

1. The ideal I is zero-dimensional, i.e., V (I) is finite.308

2. The ideal I is radical, which means that fr ∈ I implies f ∈ I, for all f ∈ K[X], r ∈ N.309

3. The coefficient field K is algebraically closed, which means that every univariate polynomial310

in K[x] has a root in K. For example, C is algebraically closed, while Q and R are not.311

In the worst case, we may need to process all points in V (I). The zero-dimensionality of I312

ensures that we can do this in finite time. The other two conditions exclude pathological313

cases where polynomials have roots with higher multiplicity or roots in an extension of K.314

We furthermore assume that we have access to a function sample(I), which returns a315

point of V (I) and, when called sufficiently often, enumerates all of V (I). Additionally, a316

function verify(f) is assumed, which returns “true” if and only if f ∈ I and “false” otherwise.317

We deliberately keep the functions sample and verify abstract in Algorithm 2 to allow for a318

high-level presentation. Their instantiation depends on the concrete application. We discuss319

their instantiation for our application of circuit verification in the following section.320

Provided that an ideal I meets all the above assumptions, we can compute a basis of321

L(I) through an iterative process, summarized in Algorithm 2. First, we use sample(I) to322

enumerate a subset of points P ⊆ V (I). We then compute a basis L of linear polynomials323

that vanish on P using linear algebra. Note that, to also recover linear polynomials with a324

constant term, we have to prepend an additional coordinate 1 to all points in P . If L ⊆ I,325

we have found a basis of L(I). Otherwise, we sample additional points from V (I) and repeat326

the process. The assumptions on I ensure that this procedure will eventually terminate.327

▶ Proposition 16. Algorithm 2 terminates and is correct.328

Proof. For termination, note that the assumptions on the method sample ensure that the329

matrix A will eventually contain all of V (I) as its rows. Then, by construction, all elements330

CP 2025

23:10 Guess and Prove

Algorithm 3 Verification using linear extractions
Input : Circuit C in AIG format, Specification polynomial S
Output : Determine whether C fulfills the specification

1 Ginit ← Polynomial-Encoding(C);
2 Slin, Gext ← Linearize-Spec-wrt-AIG(S, Ginit);
3 G← Preprocessing(Gext);
4 while lm(Slin) ∈ {lm(g)|g ∈ G} do
5 p← g ∈ G such that lm(g) = lm(Slin); Gsub ← ∅;
6 while ∄plin and Can-Increase(Gsub) do
7 Gsub ← Subcircuit(lm(g), G, Gsub);
8 if |Gsub| is moderate then L← FGLM-style-Linerization(Gsub);
9 else L← Guess-and-Prove(Gsub, AdBinSample, SAT, min(10 · |Gsub|, 104));

10 plin ← p ∈ L such that lm(p) = lm(Slin);
11 if ∄ plin then return ⊥;
12 Slin ← Linear-Reduce(Slin, plin);
13 return Slin = 0;

in L vanish on all of V (I). With this, Hilbert’s Nullstellensatz [5, Thm. 4.1.2] together with331

the assumption that I is radical ensure that L ⊆ I. Thus, the test in line 7 will succeed332

and the algorithm will terminate and return L. For correctness, the returned set L consists333

of linear polynomials that all lie in I by the test in line 7. Thus L ⊆ L(I), and Lemma 15334

ensures that L is actually a basis of L(I). ◀335

In the worst case, Algorithm 2 has to consider all points in V (I) before finding a correct336

basis of L(I). However, in practice, a much smaller subset of points is often sufficient,337

especially if the sampling strategy is well-designed. In particular, Algorithm 2 can be338

optimized by including a repair step, which prevents wrong guesses from reoccurring in339

subsequent iterations. If verify(f) in line 7 fails for a polynomial f ∈ L, i.e., f /∈ I, then340

there is at least one point p ∈ V (I) such that f(p) ̸= 0. This point p cannot have been341

sampled in line 3. If p can be computed, adding it to A in the next iteration ensures that342

the incorrect guess f cannot reoccur, thereby improving the algorithm’s convergence rate.343

4 Recovering Linear Polynomials for Circuit Verification344

We now discuss how we use the FGLM-style linearization and guess-and-prove-style lineariz-345

ation algorithms of the previous section in the context of multiplier verification.346

Multipliers typically consist of three components: (1) partial product generation (PPG),347

where the individual bitwise products are computed, (2) partial product accumulation (PPA),348

where these products are combined using compression techniques such as Wallace trees or349

Dadda trees, and (3) the final-stage adder (FSA), which produces the final multiplication350

result. The FSA is particularly critical in determining circuit efficiency, and may use advanced351

addition techniques like carry-lookahead techniques to speed up computation.352

The main loop of our approach to circuit verification is outlined in Algorithm 3. The353

structure of this loop follows the idea from [12] of linearizing only subcircuits instead of354

attempting to extract linear polynomials from the entire circuit. We discuss optimizations of355

Algorithm 3 in Section 4.1.356

Line 1 – 2: We encode the circuit using the translation presented in Definitions 8 and 9, and357

linearize the specification polynomial S ∈ K[X] by replacing every non-linear monomial mi358

C. Hofstadler and D. Kaufmann 23:11

by a new variable yi and adding the set Γ = {yi − mi | yi /∈ X ∧ mi ∈ S ∧ deg(mi) > 1} to359

the set of gate polynomials. The correctness proof for this step can be found in [12, Lem. 3].360

Line 3: We apply the same basic preprocessing techniques as in [12]. That is, we eliminate361

all gates that only occur positively and detect vanishing monomials. Vanishing monomials362

are pairs of nodes that have the same children, but with different polarities. Thus, the363

product of the parent nodes is equal to zero. We additionally enhance the preprocessing by364

propagating vanishing monomials, see Section 4.1.365

Furthermore, we identify and mark parts of the circuit that require dedicated reasoning.366

In the case of multiplier circuits, these correspond to the FSA. Whenever the FSA employs367

carry-lookahead techniques, we must treat the entire FSA as a single subcircuit to derive the368

required linear polynomials. This necessity arises because carry-lookahead techniques compute369

carries in parallel, unlike sequential approaches such as ripple-carry adders. For identifying370

these subcircuits, we utilize the cut identification method implemented in AMulet2 [14].371

Line 4 – 6: The algorithm then iterates over the linearized specification as long as we372

have a gate polynomial in the encoding that has the same leading monomial as the linearized373

specification. In each iteration, we generate a subcircuit with root node g for which we374

perform the linearization. If no matching linearized polynomial plin is found, we increase the375

subcircuit size until completion. This is the case when the subcircuit contains all gates that376

are topologically smaller than g.377

Line 7: We identify the subcircuit as follows. If the root node g contains a marking, i.e.,378

if it belongs to a pattern identified in line 3, all nodes with the same marking are collected379

and returned. For unmarked nodes, the algorithm initially constructs a subcircuit Gsub by380

collecting all nodes up to a given depth d with a fanout size below the specified limit fout.381

Our initial values are d = 2 and fout = 4 as this has empirically shown to be the most382

efficient. Additionally, we include all nodes whose children are already part of Gsub. We also383

promote all input nodes of Gsub with a fanout of one to be included in Gsub.384

Rather than immediately increasing the depth d in following iterations, we attempt to385

expand the subcircuit by adding individual input nodes of Gsub. The expansion prioritizes386

the largest input node, based on our predefined variable ordering that still has a fanout size387

at most fout. However, every 15 iterations, the algorithm restarts with incremented depth388

and fanout limits. The threshold of 15 was empirically selected to keep the alternations389

between the depth-first and breath-first selection approaches balanced.390

In that sense, our subcircuit selection algorithm is more sophisticated than the one in [12],391

which did not consider expanding the subcircuit by individual nodes, neither was there a392

limit on the fanouts nor were special markings considered.393

Line 8: If Gsub is of moderate size, that is, the number of polynomials is less than 100,394

and the depth is at most 5 (which in our setting corresponds to all subcircuits except the395

marked FSA), we use the FGLM-based extraction method.396

There is one exception: we also use the FGLM-based extraction method for FSA where,397

after preprocessing, we detect polynomials with a degree greater than the input bitwidth of398

the circuit, but consisting only of two terms. We detected that the guess-and-prove approach399

will mostly produce incorrect guesses for such polynomials due to the high-degree monomials400

evaluating to zero exponentially often and evaluating to 1 only for one particular input.401

Line 9: For larger subcircuits with polynomials of moderate degree, we use the guess-402

and-prove approach to avoid excessive growth in normal forms, which would cause the403

computation to stall in the FGLM-style algorithm.404

First of all, let us note that the ideals arising from the subcircuits satisfy all assumptions405

made in Section 3.2. They are zero-dimensional and radical because they contain, by406

CP 2025

23:12 Guess and Prove

definition, the Boolean value polynomials for all variables. The presence of these polynomials407

also takes care of the third assumption: Even if a considered ideal I is formally defined over a408

field K that is not algebraically closed, we can implicitly treat it as defined over the algebraic409

closure K1 of K. The Boolean value polynomials ensure that the underlying variety V (I)410

remains unchanged, which guarantees that our algorithm will return the correct result.411

We instantiate the sample and verify plugins required in Algorithm 2 as follows. For412

sampling, we apply an adaptive strategy. In the first iteration, we randomly draw values 0413

and 1 for all the inputs of the subcircuit and propagate the signals according to the gate414

structure of the subcircuit. We draw at least 10 times the size of gates in Gsub samples,415

but at most 10 000. This ensures that we have enough samples, while keeping the matrix A416

in Algorithm 2 at a computationally manageable size. To ensure that every input appears417

with both polarities, we also include the trivial samples by setting all inputs to 0 and to 1,418

respectively. If more than one iteration is required in Algorithm 2, we switch from random419

sampling to the repair strategy discussed at the end of Section 3.2. Using our verification420

plugin, we can compute witnesses for wrong guesses in the form of points in the variety and421

only append those witnesses to the matrix in subsequent iterations. We call our strategy422

adaptive-binary-sampling (AdBinSample).423

As a verification technique, we use SAT solving (SAT). Verifying that a guessed poly-424

nomial f lies in the ideal induced by Gsub corresponds to showing that f equals zero for425

all signals that can pass through the circuit. To show this, we assume f ̸= 0 and show426

unsatisfiability. We first encode each AIG gate that belongs to Gsub into conjunctive normal427

form (CNF). To translate f ̸= 0, we split it into two pseudo-Boolean (PB) constraints f < 0428

and f > 0, both of which we translate into CNF using pblib [22]. pblib does not offer a429

direct encoding of ̸=. We make two SAT calls using the SAT solver Kissat [3]: one for the430

constraint f < 0 and another for f > 0. If f = 0, both calls have to return “unsatisfiable”.431

We acknowledge that we could also use a PB solver, such as RoundingSat [7], directly432

without making the detour of translating everything to CNF. We have tried this, and there433

was no computational difference. All instances that could be solved using Kissat could434

also be solved by RoundingSat in the same time. However, we decided to go with Kissat435

because it was easier to integrate directly into our C++ implementation.436

If one instance f < 0 or f > 0 is satisfiable, we collect the satisfying assignment provided437

by Kissat as a witness for the wrong guess and add it as a sample in the next iteration of438

the guess-and-prove algorithm. This ensures that the incorrect guess f cannot reappear in439

future iterations, leading to a faster convergence of the guessing procedure.440

Moreover, by using Lemma 15, we can also quickly identify situations when the considered441

subcircuit was chosen too small. We are only interested in finding a linear polynomial in442

Gsub that involves the variable lm(g). If, at some point in Algorithm 2, the candidate set L443

does not contain any polynomial involving this variable, then Lemma 15 implies that no such444

polynomial can exist in Gsub (even if the candidate set L still contains incorrect guesses).445

Thus, in such a situation, we can immediately abort Algorithm 2 and extend Gsub.446

Line 10– 13: In case our linearization was successful, we extract plin from L to reduce447

the specification. If no polynomial plin was found after choosing Gsub as large as possible,448

we return false. We reduce the linearized specification Slin by plin. After the main loop449

terminates, that is, when Slin cannot be reduced any further, we return whether the final450

result is equal to zero.451

1 The algebraic closure K of a field K is the smallest algebraically closed field containing K. Every field
has an algebraic closure. For instance, R = C.

C. Hofstadler and D. Kaufmann 23:13

4.1 Optimizations452

Caching. To minimize algebraic computations, we cache the computed linear basis L for453

subcircuits. Whenever we encounter an isomorphic subcircuit, i.e., one that is structurally454

equivalent up to variable renaming, we reuse the stored linear basis L. To compare subcircuits455

for this kind of equivalence, we map the variables of both circuits to a set of “standardized”456

variables. Then we can compare the polynomial encodings of the circuits for syntactic457

equality. In our application, we have observed cases where more than 99% of the utilized458

subcircuits are cached.459

Extract all linear polynomials. In line 10 of Algorithm 3 we actually do not only extract460

plin, but all linear polynomials of L. Since plin is the root of the subcircuit, all other linear461

polynomials in L are topologically smaller and may be required to reduce Slin at later stages.462

Propagating Vanishing Constraints. In [12], only pairs of nodes with equal input nodes463

are marked as vanishin monomials. We extend this by further propagating the vanishing464

monomials along the positive parent nodes. For example, consider a detected vanishing465

monomial g1g2 = 0, and assume that there are gates with g3 − g1(1 − g4), g5 − g2g6, where466

g1 and g2 are positive inputs, then we also have g2g3 = g1g5 = g3g5 = 0.467

5 Experiments468

We have implemented Algorithm 3 in a new C++ tool, called TalisMan. We highlight that469

TalisMan is not restricted to circuit verification, but it can handle any AIG.470

We now evaluate TalisMan and compare it to related work [11–13,16] using a total of471

207 integer multiplier benchmarks. All benchmarks represent correct multipliers, meaning the472

circuits satisfy their specifications. We consider two types of benchmarks: structured circuits,473

where the components of a multiplier are clearly recognizable, and synthesized circuits, where474

gates are merged and rewritten to optimize the circuit, blurring component boundaries and475

complicating direct verification. We consider the following two sets:476

1. Structured aoki-multipliers [9]: This set of benchmarks is generated by combining different477

architectures for PPG, PPA, and FSA2, yielding 192 structured multiplier architectures.478

All of these circuits have an input bit-width of 64 and consist of 38 000 to 52 000 nodes.479

2. Synthesized ABC-multipliers [1]: We generate a multiplier using ABC, consisting of a480

simple PPG, an array PPA, and a ripple-carry FSA for bitwidths 32, 64, and 128. We481

optimize the multipliers using four standard synthesis scripts (resyn, resyn2, resyn3, dc2)482

and a complex script that combines multiple techniques3. These 15 optimized benchmarks483

showcase the robustness of our approach. The node size ranges between 8000 and 130 000.484

Our experiments are conducted on a cluster of dual-socket AMD EPYC 7313 @ 3.7GHz485

machines running Ubuntu 24.04. The time is listed in rounded seconds (wall-clock time).486

We set the time limit to 300 s and the memory limit to 25 000 MB.487

2
PPG: simple (sp), Booth encoding (bp); PPA: Array (ar), Wallace tree (wt), Balanced delay tree (bd), Overturned-stairs tree (os),
Dadda tree (dt), (4;2) compressor tree (ct), (7,3) counter tree (cn), Red. binary addition tree (ba); FSA: Ripple-carry (rc), Carry
look-ahead (cl), Ripple-block carry look-ahead (rb), Block carry look-ahead (bc), Ladner-Fischer (lf), Kogge-Stone (ks), Brent-Kung
(bk), Han-Carlson (hc), Conditional sum (cn), Carry select (cs), Carry-skip fix size (csf), Carry-skip var. size (csv)

3
-c "logic; mfs2 -W 20; ps; mfs; st; ps; dc2 -l; ps; resub -l -K 16 -N 3 -w 100; ps; logic; mfs2 -W 20; ps; mfs; st; ps; iresyn -l; ps; resyn; ps;
resyn2; ps; resyn3; ps; dc2 -l; ps;"

CP 2025

23:14 Guess and Prove

10 1 100 101 102

CPU Time (limit = 300 sec)
0.0

2.5

5.0

7.5

10.0

12.5

15.0
So

lv
ed

 In
sta

nc
es

Teluma
AMulet
DPOO
TalisMan
MultiLinG

Figure 2 Performance on ABC benchmarks.

10 1 100 101 102

CPU Time (limit = 300 sec)
0

50

100

150

200

So
lv

ed
 In

sta
nc

es

Teluma
AMulet
DPOO
TalisMan
MultiLinG

Figure 3 Performance on aoki benchmarks

1 10 100
TalisMan

1

10

100

M
ul

tiL
in

G

Figure 4 TalisMan vs. MultiLinG

50 100 150 200 250 300
CPU Time (limit = 300 sec)

0

50

100

150

200

So
lv

ed
 In

sta
nc

es

TalisMan
no-cache
no-van
only-GaP
only-FGLM
gap-uses-algred
use-GB

Figure 5 Ablation study of TalisMan.

5.1 Results488

In the following, we discuss the results of the experimental evaluation, splitting it into a489

comparison of TalisMan with related work and an ablation study on TalisMan.490

We compare our tool TalisMan to MultiLinG [12], which also uses a linearization ap-491

proach, as well as to DynPhaseOrderOpt (DPOO) [16], AMulet2 [13], and TeluMA [11],492

all of which rely on lexicographic monomial orders. The results for the ABC benchmarks493

are shown in Figure 2 and for the aoki benchmarks in Figure 3. Tools using linearization494

approaches (MultiLinG and our tool TalisMan) are depicted in color. All tools using495

non-linear approaches are depicted in grayscale. We highlight the following key observations:496

1. While AMulet2 and TeluMA can solve all of the aoki benchmarks, their approaches497

are not robust under logic synthesis. AMulet2 solves only 4 ABC benchmarks, whereas498

TeluMA solves 13. In contrast, DPOO, MultiLinG, and TalisMan solve all of them.499

2. DPOO solves 173 aoki benchmarks, while TalisMan solves 136 benchmarks. However,500

among those 136 benchmarks are 11 that are not solved by DPOO.501

3. Among the 44 aoki benchmarks solved by MultiLinG, 5 cannot be solved by TalisMan4.502

We examined these cases but could not identify any shared structural characteristics that503

4
Those instances are: bp-ba-cl, bp-os-cl, sp-cn-cl, bp-cn-rc, and sp-cn-rc. All of them time out in the inner loop of Algorithm 3.

C. Hofstadler and D. Kaufmann 23:15

Related Work
TalisMan

Name Total Subcircuits FGLM Guess and Prove
[13] [11] [16] [12] Time # %Ch # Time # Time Guess Eval %Co m.It.

abc64-cmp TO EE 1.1 7.3 1.9 4033 99.7 12 0.0 0 0 0 0 0 0
abc64-rsn2 TO 0.2 1.1 7.2 1.9 4033 99.7 12 0.0 0 0 0 0 0 0
abc128-cmp TO EE 5.8 123.5 27.3 16257 99.9 12 0.0 0 0 0 0 0 0
abc128-rsn2 TO 1.4 5.9 124.6 28.1 16257 99.9 12 0.0 0 0 0 0 0 0
bp-ar-ks 0.6 0.5 52.7 TO 205.9 6040 98.7 74 0.6 3 197.6 15087 3855 28.5 5
bp-ba-hc 0.8 0.6 - TO 113.2 6147 97.6 144 0.6 1 104.2 4432 2754 48.0 3
bp-bd-rb 0.5 0.5 24.1 TO 75.6 5561 98.2 100 0.6 2 67.9 4452 1364 80.3 3
bp-cn-cl 10.2 2.5 - 155.8 124.4 2684 82.3 474 32.3 0 0 0 0 0 0
bp-ct-csv 0.9 0.3 10.2 TO 68.3 5204 88.2 614 40.4 1 17.3 864 864 100 1
bp-dt-lf 0.5 0.5 4.8 TO 94.0 5605 98.3 96 0.7 1 85.8 5091 2285 52.1 4
bp-os-rc 0.3 0.2 3.6 86.2 8.3 5697 98.1 108 0.7 0 0 0 0 0 0
bp-wt-csf 1.1 0.5 8.9 TO 24.0 6007 98.0 117 0.7 1 14.8 800 800 100 1
sp-ar-rc 0.2 0.2 1.5 66.1 3.0 6509 99.7 18 0.0 0 0 0 0 0 0
sp-ba-csf 1.2 0.5 6.1 TO 26.3 8012 98.9 87 0.0 1 18.0 883 883 100 1
sp-bd-lf 0.5 0.4 2.8 TO 81.5 6403 99.4 40 0.0 1 76.3 5733 2077 52.4 5
sp-ct-cl 4.5 1.7 - 291.6 101.1 7782 95.7 335 25.4 0 0 0 0 0 0
sp-ct-hc 0.5 0.3 47.9 TO 98.2 7756 97.7 174 0.1 1 89.0 3675 2154 52.5 3
sp-dt-cs 0.4 0.3 2.5 TO 127.2 6958 99.2 57 0.0 2 120.5 5906 1735 83.7 3
sp-os-bc 0.4 0.4 9.5 MO 57.9 6420 99.2 50 0.0 2 52.7 6794 1137 84.9 4
sp-wt-ks 0.9 0.5 114.0 TO 137.0 7639 99.3 49 0.0 1 129.0 4701 2861 48.1 3

Table 1 Statistics of selected benchmarks. TO: > 300 sec, MO: > 25000 MB, EE: error.

might explain MultiLinG’s advantage. We believe that the performance difference may504

be due to variations in the heuristics used for subcircuit selection.505

While we are still unable to fully outperform the non-linear lexicographic reasoning506

approaches, TalisMan solves around three times more benchmarks and is an order of507

magnitude faster than the linearization approach of MultiLinG. A direct comparison of508

the two linearization approaches is shown in Figure 4.509

We present statistics on selected benchmarks in Table 1. The first block shows the timings510

of related work, while the second block provides additional insights into our results. We511

list the total time in rounded seconds. The subcircuits block lists the number of generated512

subcircuits (“#”) and the percentage of circuits found in the cache (“%Ch”). In FGLM, we513

list the number of calls (“#”) and the total time (“Time”) spent in the FGLM algorithm.514

In the Guess and Prove block, we also list the number of calls (“#”) along with the total515

time (“Time”). We further state the number of guessed polynomials (“Guess”) and the516

actual number evaluated (“Eval”), since we do not re-evaluate polynomials already found in517

previous iterations. We show the percentage of correctly guessed polynomials (“%Co”), and518

we also list the maximum number of iterations needed (“m.It.”). A complete table, showing519

statistics for all 207 benchmarks, is included in Appendix A.520

Table 1 reveals some interesting facts: we can cache more than 80% of the circuits,521

even for synthesized ones. When there are fewer than 100 FGLM calls, computation time522

remains very low. In some cases, the guess-and-prove method immediately returns the correct523

polynomials. However, at most 5 iterations are needed to repair the incorrect guesses.524

The time difference between “Total Time” and the “FGLM-time” and “Guess-and-Prove-525

Time” is mostly spent on the reduction of the specification. Only a negligible amount of526

computation time is spent on parsing and preprocessing. Around 30-40% of the time listed527

for “Guess and Prove” is spent in the SAT solver.528

We also run an ablation study on TalisMan. The results are summarized in Figure 5.529

We compare the default setting of TalisMan to the following configurations: We only use530

CP 2025

23:16 Guess and Prove

1 10 100
TalisMan

1

10

100

on
ly

-F
GL

M

Figure 6 TalisMan vs. only-FGLM

1 10 100
TalisMan

1

10

100

on
ly

-G
aP

Figure 7 TalisMan vs. only-GaP

FGLM-style linearization (only-FGLM) or only guess-and-prove-style linearization (only-531

GaP) to compute linear polynomials. We turn off caching and always repeat all algebraic532

computations (no-cache) or turn off identification and propagation of vanishing monomials533

(no-van). We use repeated polynomial division (= ideal membership test) for verifying the534

guessed polynomials, instead of using Kissat (gap-uses-algred). And finally, since we also535

use a different subcircuit heuristic, employ propagation of vanishing monomials, and use536

caching, a direct comparison with MultiLinG does not fully reflect the strengths of our537

hybrid approach in comparison to using a degree-compatible Gröbner basis. Hence, we538

have also added the option to extract linear polynomials by computing a degree-compatible539

Gröbner basis using msolve [2] in TalisMan (use-GB).540

It can be seen in Figure 5 that the default settings of TalisMan and no-cache solve the541

most benchmarks. Surprisingly, turning off caching does not have a huge negative impact542

on the computation time. This indicates that caching a subcircuit is as expensive as simply543

conducting the algebraic operations in our case. Turning off vanishing monomials leads to544

a loss of 11 benchmarks. When forcing TalisMan to use only one of our two proposed545

approaches, we always lose benchmarks. Using only FGLM-style linearization leads to only546

42 solved instances, while using only guess-and-prove-style linearization leads to 129 solved547

benchmarks. We have included scatter plots in Figure 6 and Figure 7. While it can be seen in548

Figure 6 that using only FGLM always worsens the situation, Figure 7 shows that there are549

some benchmarks that benefit from using only the guess-and-prove approach. Using only the550

guess-and-prove approach solved 18 benchmarks that are not solved in the default settings,551

17 of which use a (7,3)-counter tree as PPA. Verifying guessed polynomials using algebra, or552

using the Gröbner basis approach instead, lead to a tremendous loss of benchmarks.553

6 Conclusion554

We have presented a hybrid approach for extracting linear polynomials from a set of polynomi-555

als. Our approach combines an FGLM-style linearization method with a guess-and-prove-style556

approach. We first present these algorithms at a general level before instantiating them557

for circuit verification. Our experimental evaluation shows that we outperform existing558

linearization techniques based on Gröbner bases. In the future, we aim to further improve559

our tool with more sophisticated algorithms for subcircuit detection. We also envision that560

our methods have applications beyond circuit verification, such as equivalence checking.561

C. Hofstadler and D. Kaufmann 23:17

References562

1 Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and563

Verification. http://www.eecs.berkeley.edu/~alanmi/abc/, 2019. Bitbucket Version 1.01.564

2 Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. msolve: A library for solving565

polynomial systems. In Intl. Symposium on Symbolic and Algebraic Computation (ISSAC),566

pages 51–58. ACM, 2021. doi:10.1145/3452143.3465545.567

3 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.568

CaDiCaL, Gimsatul, IsaSAT and Kissat entering the SAT Competition 2024. In Proc. of SAT569

Competition 2024 – Solver, Benchmark and Proof Checker Descriptions, volume B-2024-1 of570

Department of Computer Science Report Series B, pages 8–10. University of Helsinki, 2024.571

4 Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes572

nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.573

5 David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms - an introduction574

to computational algebraic geometry and commutative algebra (2. ed.). Undergraduate texts in575

mathematics. Springer, 1997.576

6 David A. Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. Springer, 2005.577

7 Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey.578

Cutting to the core of pseudo-boolean optimization: Combining core-guided search with579

cutting planes reasoning. In Conf. on Artificial Intelligence AAAI, pages 3750–3758. AAAI580

Press, 2021. doi:10.1609/aaai.v35i5.16492.581

8 Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient computation582

of zero-dimensional gröbner bases by change of ordering. J. Symb. Comput., 16(4):329–344,583

1993. doi:10.1006/jsco.1993.1051.584

9 Naofumi Homma, Yuki Watanabe, Takafumi Aoki, and Tatsuo Higuchi. Formal design of585

arithmetic circuits based on arithmetic description language. IEICE Trans. Fundam. Electron.586

Commun. Comput. Sci., 89-A(12):3500–3509, 2006. doi:10.1093/ietfec/e89-a.12.3500.587

10 Daniela Kaufmann. Formal Verification of Multiplier Circuits using Computer Algebra. PhD588

thesis, Computer Science, Johannes Kepler University Linz, 2020.589

11 Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström. Adding dual variables590

to algebraic reasoning for gate-level multiplier verification. In 2Design, Automation & Test in591

Europe Conf. & Exhibition, DATE, pages 1431–1436. IEEE, 2022. doi:10.23919/DATE54114.592

2022.9774587.593

12 Daniela Kaufmann and Jérémy Berthomieu. Extracting linear relations from gröbner bases594

for formal verification of and-inverter graphs. In Tools and Algorithms for the Construction595

and Analysis of Systems TACAS, volume 15696 of LNCS, pages 355–374. Springer, Springer,596

2025. doi:10.1007/978-3-031-90643-5_19.597

13 Daniela Kaufmann and Armin Biere. Amulet 2.0 for verifying multiplier circuits. In Tools598

and Algorithms for the Construction and Analysis of Systems TACAS, volume 12652 of LNCS,599

pages 357–364. Springer, 2021. doi:10.1007/978-3-030-72013-1_19.600

14 Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combining601

SAT and computer algebra. In Formal Methods in Computer Aided Design, FMCAD, pages602

28–36. IEEE, 2019. doi:10.23919/FMCAD.2019.8894250.603

15 Daniela Kaufmann, Armin Biere, and Manuel Kauers. Incremental column-wise verification of604

arithmetic circuits using computer algebra. Formal Methods Syst. Des., 56(1):22–54, 2020.605

doi:10.1007/s10703-018-00329-2.606

16 Alexander Konrad and Christoph Scholl. Symbolic computer algebra for multipliers revisited607

- it’s all about orders and phases. In Formal Methods in Computer-Aided Design FMCAD,608

pages 261–271. IEEE, 2024. doi:10.34727/2024/isbn.978-3-85448-065-5_32.609

17 Alexander Konrad, Christoph Scholl, Alireza Mahzoon, Daniel Große, and Rolf Drechsler.610

Divider verification using symbolic computer algebra and delayed don’t care optimization.611

In Formal Methods in Computer-Aided Design FMCAD, pages 1–10. IEEE, 2022. doi:612

10.34727/2022/isbn.978-3-85448-053-2_17.613

CP 2025

http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1145/3452143.3465545
https://doi.org/10.1609/aaai.v35i5.16492
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1093/ietfec/e89-a.12.3500
https://doi.org/10.23919/DATE54114.2022.9774587
https://doi.org/10.23919/DATE54114.2022.9774587
https://doi.org/10.23919/DATE54114.2022.9774587
https://doi.org/10.1007/978-3-031-90643-5_19
https://doi.org/10.1007/978-3-030-72013-1_19
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.1007/s10703-018-00329-2
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_32
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_17
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_17
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_17

23:18 Guess and Prove

18 Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K. Ganai. Robust boolean614

reasoning for equivalence checking and functional property verification. IEEE Trans. Comput.615

Aided Des. Integr. Circuits Syst., 21(12):1377–1394, 2002. doi:10.1109/TCAD.2002.804386.616

19 Jinpeng Lv, Priyank Kalla, and Florian Enescu. Efficient gröbner basis reductions for formal617

verification of galois field arithmetic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits618

Syst., 32(9):1409–1420, 2013. doi:10.1109/TCAD.2013.2259540.619

20 Alireza Mahzoon, Daniel Große, and Rolf Drechsler. Polycleaner: clean your polynomials620

before backward rewriting to verify million-gate multipliers. In Intl. Conf. on Computer-Aided621

Design ICCAD, page 129. ACM, 2018. doi:10.1145/3240765.3240837.622

21 Alireza Mahzoon, Daniel Große, Christoph Scholl, and Rolf Drechsler. Towards formal623

verification of optimized and industrial multipliers. In Design, Automation & Test in Europe624

Conf. & Exhibition, DATE, pages 544–549. IEEE, 2020. doi:10.23919/DATE48585.2020.625

9116485.626

22 Tobias Philipp and Peter Steinke. Pblib - A library for encoding pseudo-boolean constraints627

into CNF. In Theory and Applications of Satisfiability Testing - SAT 2015 - 18th Intl. Conf.,628

Austin, TX, USA, September 24-27, 2015, Proceedings, volume 9340 of LNCS, pages 9–16.629

Springer, 2015. doi:10.1007/978-3-319-24318-4_2.630

23 William A. Stein. Modular Forms: A Computational Approach, volume 79. American631

Mathematical Soc., 2007.632

24 Mertcan Temel. Vescmul: Verified implementation of s-c-rewriting for multiplier verification.633

In Tools and Algorithms for the Construction and Analysis of Systems TACAS, volume 14570634

of LNCS, pages 340–349. Springer, 2024. doi:10.1007/978-3-031-57246-3_19.635

https://doi.org/10.1109/TCAD.2002.804386
https://doi.org/10.1109/TCAD.2013.2259540
https://doi.org/10.1145/3240765.3240837
https://doi.org/10.23919/DATE48585.2020.9116485
https://doi.org/10.23919/DATE48585.2020.9116485
https://doi.org/10.23919/DATE48585.2020.9116485
https://doi.org/10.1007/978-3-319-24318-4_2
https://doi.org/10.1007/978-3-031-57246-3_19

C. Hofstadler and D. Kaufmann 23:19

A Statistics on Benchmarks636

We present statistics for the full benchmark set used in our experimental evaluation.637

Table 2 Statistics of TalisMan and related work. TO: > 300 sec, MO: > 25000 MB, EE: error.

Related Work
TalisMan

Name Total Subcircuits FGLM Guess and Prove
[13] [11] [16] [12] Time # %Ch # Time # Time Guess Eval %Co m.It.

abc32-cmp TO EE 0.2 0.6 0.2 993 98.8 12 0.0 0 0 0 0 0 0
abc32-dc2 0.0 0.0 0.2 0.3 0.2 992 99.1 9 0.0 0 0 0 0 0 0
abc32-rsn TO 0.0 0.2 0.6 0.2 993 98.8 12 0.0 0 0 0 0 0 0
abc32-rsn2 TO 0.0 0.3 0.6 0.2 993 98.8 12 0.0 0 0 0 0 0 0
abc32-rsn3 0.0 0.0 0.2 0.3 0.2 992 99.1 9 0.0 0 0 0 0 0 0
abc64-cmp TO EE 1.1 7.3 1.9 4033 99.7 12 0.0 0 0 0 0 0 0
abc64-dc2 0.1 0.2 1.1 7.0 1.9 4032 99.8 9 0.0 0 0 0 0 0 0
abc64-rsn TO 0.2 1.0 7.5 1.9 4033 99.7 12 0.0 0 0 0 0 0 0
abc64-rsn2 TO 0.2 1.1 7.2 1.9 4033 99.7 12 0.0 0 0 0 0 0 0
abc64-rsn3 0.1 0.2 1.1 7.2 1.9 4032 99.8 9 0.0 0 0 0 0 0 0
abc128-cmp TO EE 5.8 123.5 27.3 16257 99.9 12 0.0 0 0 0 0 0 0
abc128-dc2 0.9 1.4 5.8 121.0 27.8 16256 99.9 9 0.0 0 0 0 0 0 0
abc128-rsn TO 1.4 5.8 116.5 28.3 16257 99.9 12 0.0 0 0 0 0 0 0
abc128-rsn2 TO 1.4 5.9 124.6 28.1 16257 99.9 12 0.0 0 0 0 0 0 0
abc128-rsn3 0.9 1.4 5.8 128.3 27.4 16256 99.9 9 0.0 0 0 0 0 0 0
bp-ar-bc 0.4 0.5 11.9 TO 33.1 6039 98.7 75 0.6 2 25.2 2253 848 87.3 2
bp-ar-bk 0.4 0.5 4.2 TO 41.1 6042 98.7 74 0.6 3 33.2 4327 852 86.2 3
bp-ar-cl 2.6 1.1 243.2 TO 30.6 2425 92.4 184 8.6 0 0 0 0 0 0
bp-ar-cn 0.5 0.4 6.1 TO TO - - - - - - - - - -
bp-ar-cs 0.4 0.3 5.1 TO TO - - - - - - - - - -
bp-ar-csf 0.4 0.5 9 TO 17.2 6045 98.7 78 0.6 1 9.3 628 628 100 1
bp-ar-csv 0.5 0.5 6.2 TO 18.4 6038 98.7 75 0.6 1 10.5 673 673 100 1
bp-ar-hc 0.5 0.5 11.0 TO 51.9 6040 98.8 74 0.6 1 44.1 2807 1557 55.9 3
bp-ar-ks 0.6 0.5 52.7 TO 205.9 6040 98.7 74 0.6 3 197.6 15087 3855 28.5 5
bp-ar-lf 0.4 0.5 4.6 TO 51.4 6040 98.8 74 0.6 1 43.4 3589 1438 59.5 4
bp-ar-rb 0.4 0.5 10.9 TO 52.5 6040 98.7 75 0.6 3 44.6 3813 1011 84.3 2
bp-ar-rc 0.3 0.2 3.5 70.7 7.8 6132 98.7 80 0.6 0 0 0 0 0 0
bp-ba-bc 0.5 0.5 12.2 TO 58.3 6148 97.6 144 0.7 2 49.8 4042 1188 83.9 3
bp-ba-bk 0.5 0.5 14.3 TO 83.1 6148 97.6 144 0.7 2 74.6 5890 1987 56.4 3
bp-ba-cl 5.7 2.4 TO 135.3 TO - - - - - - - - - -
bp-ba-cn 0.5 0.4 46.1 MO TO - - - - - - - - - -
bp-ba-cs 0.4 0.3 5.6 TO TO - - - - - - - - - -
bp-ba-csf 1.3 0.5 8.2 TO 27.8 6147 97.6 144 0.7 1 18.2 894 894 100 1
bp-ba-csv 1.2 0.5 8.5 TO 28.0 6147 97.6 144 0.7 1 18.6 898 898 99.8 1
bp-ba-hc 0.8 0.6 TO TO 113.2 6147 97.6 144 0.6 1 104.2 4432 2754 48.0 3
bp-ba-ks 1.2 0.6 151.6 TO 213.8 6147 97.6 144 0.7 1 204.4 7493 3969 41.5 4
bp-ba-lf 0.6 0.5 5.2 TO TO - - - - - - - - - -
bp-ba-rb 0.5 0.5 13.7 MO 85.6 6148 97.6 144 0.7 2 77.1 4728 1480 78.7 3
bp-ba-rc 0.3 0.3 3.6 81.2 8.5 6275 97.7 147 0.7 0 0 0 0 0 0
bp-bd-bc 0.4 0.5 10.0 TO 41.9 5560 98.2 100 0.6 1 34.0 3831 1057 89.8 4
bp-bd-bk 0.5 0.5 5.0 TO 51.6 5563 98.2 99 0.6 2 43.6 3801 1110 85.0 3
bp-bd-cl 4.8 2.0 TO 125.5 98.5 2305 87.8 280 27.8 0 0 0 0 0 0
bp-bd-cn 0.5 0.4 6.0 MO TO - - - - - - - - - -
bp-bd-cs 0.4 0.3 5.7 TO TO - - - - - - - - - -
bp-bd-csf 1.3 0.5 8.5 TO 23.9 5567 98.2 102 0.6 1 15.0 814 814 100 1
bp-bd-csv 0.9 0.5 8.6 TO 26.0 5560 98.2 100 0.7 1 17.0 858 858 99.9 1
bp-bd-hc 0.6 0.5 28.9 TO 85.0 5562 98.2 99 0.6 1 76.9 3666 2060 54.9 3
bp-bd-ks 0.8 0.6 128.6 TO 150.6 5560 98.2 99 0.6 1 142.2 4909 2841 50.6 3

CP 2025

23:20 Guess and Prove

Related Work
TalisMan

Name Total Subcircuits FGLM Guess and Prove
[13] [11] [16] [12] Time # %Ch # Time # Time Guess Eval %Co m.It.

bp-bd-lf 0.5 0.5 4.9 EE 138.5 5564 98.2 99 0.6 3 130.6 12083 2725 41.1 4
bp-bd-rb 0.5 0.5 24.1 TO 75.6 5561 98.2 100 0.6 2 67.9 4452 1364 80.3 3
bp-bd-rc 0.3 0.2 3.6 70.1 7.9 5681 98.2 101 0.7 0 0 0 0 0 0
bp-cn-bc 5.4 0.7 267.8 TO TO - - - - - - - - - -
bp-cn-bk 5.5 0.7 148.8 TO TO - - - - - - - - - -
bp-cn-cl 10.2 2.5 TO 155.8 124.4 2684 82.3 474 32.3 0 0 0 0 0 0
bp-cn-cn 1.3 1.1 51.1 MO TO - - - - - - - - - -
bp-cn-cs 1.3 1.0 123.0 TO TO - - - - - - - - - -
bp-cn-csf 5.8 0.6 TO TO TO - - - - - - - - - -
bp-cn-csv 6.5 0.7 268.0 TO TO - - - - - - - - - -
bp-cn-hc 5.7 0.7 TO TO TO - - - - - - - - - -
bp-cn-ks 6.0 0.8 TO TO TO - - - - - - - - - -
bp-cn-lf 5.5 0.7 152.3 TO TO - - - - - - - - - -
bp-cn-rb 5.4 0.7 271.3 MO TO - - - - - - - - - -
bp-cn-rc 5.3 0.7 TO 87.1 TO - - - - - - - - - -
bp-ct-bc 0.4 0.3 37.4 TO 102.6 5205 88.2 614 40.4 2 52.3 6732 1141 83.8 4
bp-ct-bk 0.4 0.3 4.8 TO 96.2 5207 88.2 613 40.7 2 45.6 3837 1152 82.5 3
bp-ct-cl 4.4 1.9 TO 252.2 143.1 4137 81.7 757 65.8 0 0 0 0 0 0
bp-ct-cn 0.4 0.3 6.1 MO TO - - - - - - - - - -
bp-ct-cs 0.4 0.3 5.4 TO TO - - - - - - - - - -
bp-ct-csf 1.4 0.3 8.6 TO 66.9 5211 88.2 616 40.3 1 15.5 821 821 100 1
bp-ct-csv 0.9 0.3 10.2 TO 68.3 5204 88.2 614 40.4 1 17.3 864 864 100 1
bp-ct-hc 0.6 0.3 21.9 TO 132.0 5206 88.2 613 40.6 1 81.5 3703 2091 54.7 3
bp-ct-ks 1.0 0.4 129.4 TO 200.9 5204 88.2 613 40.2 1 150.2 4978 2982 48.7 3
bp-ct-lf 0.5 0.3 5 TO 126.7 5206 88.2 613 40.3 1 76.4 4831 2111 53.6 4
bp-ct-rb 0.5 0.3 16.9 TO 119.4 5205 88.2 614 40.6 2 68.4 4479 1332 82.8 3
bp-ct-rc 0.3 0.2 3.5 159.9 50.3 5325 88.4 616 40.4 0 0 0 0 0 0
bp-dt-bc 0.5 0.5 14.4 TO 74.6 5606 98.2 97 0.7 3 66.5 6975 1239 80.0 3
bp-dt-bk 0.4 0.5 4.7 TO 72.8 5607 98.2 96 0.7 3 64.8 7317 1253 78.9 4
bp-dt-cl 5.1 2.2 TO 142.9 125.7 2229 90.2 218 31.6 0 0 0 0 0 0
bp-dt-cn 0.5 0.4 6.5 MO TO - - - - - - - - - -
bp-dt-cs 0.4 0.3 5.4 TO TO - - - - - - - - - -
bp-dt-csf 0.8 0.5 8.8 TO 24.8 5611 98.2 101 0.7 1 16.4 847 847 100 1
bp-dt-csv 1.4 0.5 9.2 TO 27.4 5604 98.2 97 0.7 1 18.4 899 899 99.8 1
bp-dt-hc 0.6 0.5 92.7 TO 107.4 5605 98.3 96 0.7 1 99.2 5068 2200 54.1 4
bp-dt-ks 1.0 0.6 175.2 TO 267.6 5605 98.2 96 0.7 2 259.0 10564 3872 39.1 3
bp-dt-lf 0.5 0.5 4.8 TO 94.0 5605 98.3 96 0.7 1 85.8 5091 2285 52.1 4
bp-dt-rb 0.5 0.5 14.2 TO 59.2 5605 98.2 97 0.7 2 51.2 5002 1178 84.1 4
bp-dt-rc 0.3 0.2 3.5 78.9 8.1 5730 98.2 100 0.7 0 0 0 0 0 0
bp-os-bc 0.4 0.4 10.1 MO 40.2 5575 98.1 107 0.7 1 32.1 2897 1052 90.9 3
bp-os-bk 0.4 0.4 4.6 TO 53.3 5578 98.1 105 0.7 2 45.2 3838 1154 82.4 3
bp-os-cl 5.4 1.9 TO 133.6 TO - - - - - - - - - -
bp-os-cn 0.5 0.4 6.1 MO TO - - - - - - - - - -
bp-os-cs 0.5 0.4 5.5 TO TO - - - - - - - - - -
bp-os-csf 1.4 0.4 8.6 TO 24.9 5582 98.0 110 0.7 1 15.6 821 821 100 1
bp-os-csv 1.0 0.4 8.3 TO 26.0 5575 98.1 107 0.7 1 17.2 867 867 99.7 1
bp-os-hc 0.6 0.4 23.5 TO 96.5 5577 98.1 105 0.7 1 88.2 3725 2175 52.5 3
bp-os-ks 1.0 0.5 115.8 TO 169.5 5575 98.1 105 0.7 1 161.0 4978 2964 49.0 3
bp-os-lf 0.5 0.4 5 TO 83.8 5577 98.1 105 0.7 1 75.8 4809 2075 54.5 4
bp-os-rb 0.5 0.4 23.3 TO 77.0 5576 98.0 107 0.7 2 69.0 4471 1325 83.2 3
bp-os-rc 0.3 0.2 3.6 86.2 8.3 5697 98.1 108 0.7 0 0 0 0 0 0
bp-wt-bc 0.4 0.5 11.3 TO 39.1 6000 98.1 115 0.7 1 30.9 2823 1035 90.0 3
bp-wt-bk 0.5 0.5 4.9 TO 40.5 6002 98.1 113 0.7 1 32.1 2796 1038 89.2 3
bp-wt-cl 3.9 1.9 TO 135.1 89.3 2276 85.2 336 22.6 0 0 0 0 0 0

C. Hofstadler and D. Kaufmann 23:21

Related Work
TalisMan

Name Total Subcircuits FGLM Guess and Prove
[13] [11] [16] [12] Time # %Ch # Time # Time Guess Eval %Co m.It.

bp-wt-cn 0.5 0.4 5.9 MO TO - - - - - - - - - -
bp-wt-cs 0.4 0.3 5.3 TO TO - - - - - - - - - -
bp-wt-csf 1.1 0.5 8.9 TO 24.0 6007 98.0 117 0.7 1 14.8 800 800 100 1
bp-wt-csv 0.8 0.5 8.6 TO 25.1 6000 98.1 115 0.7 1 16.3 847 847 99.5 1
bp-wt-hc 0.6 0.5 121.6 TO 86.7 6002 98.1 113 0.7 1 77.9 3602 2087 53.2 3
bp-wt-ks 0.9 0.6 119.9 TO 154.8 6000 98.1 113 0.7 1 145.8 4798 2779 50.8 3
bp-wt-lf 0.5 0.5 4.7 TO 78.5 6002 98.1 113 0.7 1 70.0 4655 1950 56.4 4
bp-wt-rb 0.5 0.5 22.5 TO 75.3 6001 98.0 115 0.7 2 66.7 4379 1337 80.5 3
bp-wt-rc 0.3 0.2 3.5 76.9 8.5 6118 98.1 116 0.7 0 0 0 0 0 0
sp-ar-bc 0.3 0.2 2.6 TO 15.5 6448 99.8 14 0.0 2 12.6 3451 600 83.2 4
sp-ar-bk 0.3 0.2 1.9 TO 11.2 6448 99.8 15 0.0 1 8.3 1483 540 90.9 3
sp-ar-cl 0.8 0.3 27.8 74.0 5.4 3999 98.1 75 1.2 0 0 0 0 0 0
sp-ar-cn 0.4 0.3 2.6 TO 55.9 6459 99.4 37 0.2 2 52.5 4077 1197 83.1 4
sp-ar-cs 0.4 0.3 2.1 TO 29.8 6460 99.4 37 0.2 3 26.8 1441 732 98.8 1
sp-ar-csf 0.3 0.2 2.2 TO 6.7 6451 99.7 16 0.0 1 3.8 425 425 100 1
sp-ar-csv 0.3 0.2 2.5 EE 7.4 6447 99.8 14 0.0 1 4.5 455 455 100 1
sp-ar-hc 0.3 0.2 4.8 TO 22.9 6448 99.8 15 0.0 1 19.0 1781 967 58.2 3
sp-ar-ks 0.3 0.2 15.8 TO 36.8 6447 99.8 14 0.0 1 32.5 2303 1282 54.5 3
sp-ar-lf 0.3 0.2 2.2 TO 21.2 6448 99.8 15 0.0 1 17.6 2344 879 64.0 4
sp-ar-rb 0.3 0.2 2.4 TO 16.6 6447 99.8 14 0.0 1 13.5 1737 639 89.7 3
sp-ar-rc 0.2 0.2 1.5 66.1 3.0 6509 99.7 18 0.0 0 0 0 0 0 0
sp-ba-bc 0.5 0.5 11.4 TO 55.7 8013 98.9 87 0.0 2 48.5 3998 1172 84.1 3
sp-ba-bk 0.6 0.5 4.5 TO TO - - - - - - - - - -
sp-ba-cl 5.2 2.2 TO EE TO - - - - - - - - - -
sp-ba-cn 0.4 0.4 3.3 TO TO - - - - - - - - - -
sp-ba-cs 0.4 0.3 2.6 TO TO - - - - - - - - - -
sp-ba-csf 1.2 0.5 6.1 TO 26.3 8012 98.9 87 0.0 1 18.0 883 883 100 1
sp-ba-csv 1.1 0.5 8.1 TO 26.3 8012 98.9 88 0.0 1 18.1 887 887 99.8 1
sp-ba-hc 0.8 0.5 158.6 TO TO - - - - - - - - - -
sp-ba-ks 1.3 0.6 137.9 TO TO - - - - - - - - - -
sp-ba-lf 0.7 0.5 3.1 TO 7.3 8249 98.3 142 0.1 0 0 0 0 0 0
sp-ba-rb 0.5 0.5 10.1 TO TO - - - - - - - - - -
sp-ba-rc 0.4 0.2 1.7 EE 7.3 8140 98.9 93 0.0 0 0 0 0 0 0
sp-bd-bc 0.5 0.4 7.0 TO 34.8 6402 99.4 40 0.0 1 30.4 2804 1010 91.8 3
sp-bd-bk 0.4 0.4 2.0 TO 48.7 6404 99.3 40 0.0 2 44.2 5898 1093 84.1 4
sp-bd-cl 4.4 1.7 TO 105.7 85.5 4112 95.6 182 22.5 0 0 0 0 0 0
sp-bd-cn 0.5 0.4 3.5 MO TO - - - - - - - - - -
sp-bd-cs 0.4 0.3 2.5 TO TO - - - - - - - - - -
sp-bd-csf 1.1 0.4 5.0 TO 19.6 6408 99.3 43 0.0 1 14.4 792 792 100 1
sp-bd-csv 1.1 0.4 6.5 TO 21.6 6402 99.4 40 0.0 1 16.2 838 838 99.9 1
sp-bd-hc 0.6 0.4 25.3 TO 79.9 6403 99.4 40 0.0 1 74.3 3596 2027 54.4 3
sp-bd-ks 1.2 0.5 96.7 TO 134.4 6402 99.4 39 0.0 1 128.9 4782 2724 51.4 3
sp-bd-lf 0.5 0.4 2.8 TO 81.5 6403 99.4 40 0.0 1 76.3 5733 2077 52.4 5
sp-bd-rb 0.5 0.4 8.0 TO 73.0 6403 99.3 40 0.0 2 68.5 5435 1349 79.3 4
sp-bd-rc 0.3 0.2 1.6 69.8 4.6 6520 99.4 42 0.0 0 0 0 0 0 0
sp-cn-bc 3.2 0.7 51.0 TO TO - - - - - - - - - -
sp-cn-bk 3.2 0.7 28.2 TO TO - - - - - - - - - -
sp-cn-cl 7.5 2.3 TO 164.0 TO - - - - - - - - - -
sp-cn-cn 1.6 1.2 11.2 MO TO - - - - - - - - - -
sp-cn-cs 1.5 1.2 10.4 TO TO - - - - - - - - - -
sp-cn-csf 4.6 0.7 13.4 TO TO - - - - - - - - - -
sp-cn-csv 4.3 0.7 14 TO TO - - - - - - - - - -
sp-cn-hc 3.3 0.7 104.2 TO TO - - - - - - - - - -
sp-cn-ks 3.7 0.8 124.9 TO TO - - - - - - - - - -

CP 2025

23:22 Guess and Prove

Related Work
TalisMan

Name Total Subcircuits FGLM Guess and Prove
[13] [11] [16] [12] Time # %Ch # Time # Time Guess Eval %Co m.It.

sp-cn-lf 3.2 0.7 24.1 TO TO - - - - - - - - - -
sp-cn-rb 3.2 0.7 23.9 MO TO - - - - - - - - - -
sp-cn-rc 3.0 0.7 177.8 139.3 TO - - - - - - - - - -
sp-ct-bc 0.3 0.3 10.0 TO 71.5 7757 97.7 174 0.1 3 62.6 8277 1175 80.9 4
sp-ct-bk 0.3 0.3 2.1 TO 53.0 7757 97.7 174 0.1 2 44.1 3800 1133 83.2 3
sp-ct-cl 4.5 1.7 TO 291.6 101.1 7782 95.7 335 25.4 0 0 0 0 0 0
sp-ct-cn 0.3 0.3 2.8 MO TO - - - - - - - - - -
sp-ct-cs 0.3 0.2 2.5 TO TO - - - - - - - - - -
sp-ct-csf 1.2 0.2 6.2 TO 25.2 7761 97.7 176 0.1 1 15.0 814 814 100 1
sp-ct-csv 1.2 0.3 7.4 TO 26.7 7755 97.7 174 0.1 1 16.7 860 860 99.8 1
sp-ct-hc 0.5 0.3 47.9 TO 98.2 7756 97.7 174 0.1 1 89.0 3675 2154 52.5 3
sp-ct-ks 0.7 0.3 108.7 TO 163.2 7755 97.8 173 0.1 1 153.6 4928 2915 49.4 3
sp-ct-lf 0.4 0.3 2.9 TO 90.3 7756 97.7 174 0.1 1 81.2 5942 2211 50.7 5
sp-ct-rb 0.4 0.3 9.3 TO 77.7 7756 97.7 174 0.1 2 68.3 4464 1362 80.6 3
sp-ct-rc 0.2 0.2 1.6 269.1 9.1 7875 97.7 180 0.1 0 0 0 0 0 0
sp-dt-bc 0.5 0.5 5.4 TO 71.5 6959 99.1 57 0.0 3 64.7 6717 1296 76.8 3
sp-dt-bk 0.5 0.4 2.1 TO 68.1 6960 99.1 58 0.0 3 61.3 7084 1258 78.1 4
sp-dt-cl 5.5 2.1 TO 109.6 121.9 3971 95.6 175 30.3 0 0 0 0 0 0
sp-dt-cn 0.4 0.4 3.8 MO TO - - - - - - - - - -
sp-dt-cs 0.4 0.3 2.5 TO 127.2 6958 99.2 57 0.0 2 120.5 5906 1735 83.7 3
sp-dt-csf 1.9 0.4 6.7 TO 24.9 6963 99.1 61 0.0 1 16.4 850 850 100 1
sp-dt-csv 2.1 0.4 6.5 EE 27.2 6957 99.2 57 0.0 1 18.6 898 898 99.7 1
sp-dt-hc 0.6 0.5 27.3 TO 99.7 6958 99.2 58 0.0 1 92.7 3855 2213 53.5 3
sp-dt-ks 1.1 0.5 149.1 TO 171.4 6957 99.2 57 0.0 1 164.1 5187 3039 49.5 3
sp-dt-lf 0.5 0.4 2.8 TO 89.2 6958 99.2 58 0.0 1 82.2 5037 2246 52.5 4
sp-dt-rb 0.5 0.4 12.3 TO 108.0 6959 99.1 57 0.0 3 101.1 9581 1531 75.2 4
sp-dt-rc 0.4 0.2 1.6 91.8 7.0 7082 99.2 58 0.0 0 0 0 0 0 0
sp-os-bc 0.4 0.4 9.5 MO 57.9 6420 99.2 50 0.0 2 52.7 6794 1137 84.9 4
sp-os-bk 0.4 0.3 2.1 TO 64.4 6422 99.2 50 0.0 3 59.2 6945 1243 77.1 4
sp-os-cl 4.5 1.9 TO 99.6 106.2 4102 95.0 206 27.3 0 0 0 0 0 0
sp-os-cn 0.5 0.4 3.6 MO TO - - - - - - - - - -
sp-os-cs 0.4 0.3 2.5 TO TO - - - - - - - - - -
sp-os-csf 1.6 0.3 5.8 TO 21.9 6425 99.2 53 0.0 1 15.4 828 828 100 1
sp-os-csv 1.6 0.3 6.4 TO 23.8 6419 99.2 50 0.0 1 17.3 874 874 99.9 1
sp-os-hc 0.6 0.4 34.4 TO 122.7 6421 99.2 50 0.0 2 116.3 7582 2587 44.5 3
sp-os-ks 0.9 0.4 105.7 TO 242.6 6420 99.2 49 0.0 2 236.1 11547 3766 38.9 4
sp-os-lf 0.5 0.4 2.8 TO 82.6 6420 99.2 50 0.0 1 77.2 4879 2156 53.0 4
sp-os-rb 0.5 0.3 8.9 TO 75.0 6420 99.2 50 0.0 2 69.8 4520 1345 82.9 3
sp-os-rc 0.3 0.2 1.6 90.1 5.2 6542 99.2 52 0.0 0 0 0 0 0 0
sp-wt-bc 0.5 0.4 7.1 TO 39.2 7639 99.3 51 0.0 1 31.6 3682 1011 90.3 4
sp-wt-bk 0.5 0.4 2.1 TO 37.5 7640 99.3 50 0.0 1 30.0 2733 1029 87.8 3
sp-wt-cl 4.4 1.7 TO 116.8 79.1 4064 93.4 269 20.1 0 0 0 0 0 0
sp-wt-cn 0.5 0.3 3.6 MO TO - - - - - - - - - -
sp-wt-cs 0.4 0.3 2.5 TO TO - - - - - - - - - -
sp-wt-csf 1.1 0.4 5.1 TO 22.1 7645 99.3 53 0.0 1 13.8 778 778 100 1
sp-wt-csv 1 0.4 5.8 TO 23.6 7639 99.3 51 0.0 1 15.4 823 823 99.9 1
sp-wt-hc 0.7 0.5 30.1 TO 93.6 7640 99.3 50 0.0 1 85.8 3514 2038 53.1 3
sp-wt-ks 0.9 0.5 114.0 TO 137.0 7639 99.3 49 0.0 1 129.0 4701 2861 48.1 3
sp-wt-lf 0.6 0.4 2.9 TO 78.0 7640 99.3 50 0.0 1 70.5 5596 1962 54.4 5
sp-wt-rb 0.5 0.4 8.1 TO 57.3 7639 99.3 51 0.0 1 49.7 4266 1207 87.4 4
sp-wt-rc 0.4 0.3 1.6 86.9 7.6 7753 99.3 54 0.0 0 0 0 0 0 0

	1 Introduction
	2 Preliminaries
	2.1 Polynomials and Gröbner Bases
	2.2 Polynomial Encodings of And-Inverter Graphs

	3 Finding Linear Polynomials in Ideals
	3.1 FGLM-style Linearization
	3.2 Guess-and-Prove Linearization

	4 Recovering Linear Polynomials for Circuit Verification
	4.1 Optimizations

	5 Experiments
	5.1 Results

	6 Conclusion
	A Statistics on Benchmarks

