
Fuzzing-based Grammar Inference

Hannes Sochor , Flavio Ferrarotti , and Daniela Kaufmann

Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
{firstname.lastname}@scch.at

Abstract. In this paper we propose and suggest a novel approach for
grammar inference that is based on grammar-based fuzzing. While ex-
ecuting a target program with random inputs, our method identifies
the program input language as a human-readable context-free grammar.
Our strategy, which integrates machine learning techniques with pro-
gram analysis of call trees, uses a far smaller set of seed inputs than
earlier work. As a further contribution we also combine the processes of
grammar inference and grammar-based fuzzing to incorporate random
sample information into our inference technique. Our evaluation shows
that our technique is effective in practice and that the input languages
of tested recursive-descending parser are correctly inferred.

Keywords: Fuzzing, Grammar-based Fuzzing, Software Testing, Gram-
mar Inference, Grammar Learning, Program Analysis

1 Introduction

Software testing is one of the most important phases of the software lifecycle.
This includes testing not only for functional correctness but also for safety and
security. Finding bugs and security vulnerabilities presents a difficult task when
facing complex software architectures. An integral part of software testing is
fuzzing software with more or less random input and tracking how the software
reacts. Having knowledge about the input structure of the software under test en-
ables the fuzzer to generate more targeted inputs which significantly increases the
chance to uncover bugs and vulnerabilities by reaching deeper program states.

As such the most successful fuzzers all come with some sort of model that
describes the input structure of the target program. One of the most promis-
ing methods poses grammar-based fuzzing, where inputs are generated based
on a context-free grammar which fully covers the so-called input language of a
program. This makes it possible for the grammar-based fuzzer to produce in-
puts that are valid or near-valid, considerably raising its success rate. Although
grammar-based fuzzing is a very successful method, in most cases such a precise
description of the input language is not available.

The automation of learning input languages for a program, in our instance
in the form of a synthesized context-free grammar, is still an issue in current
grammar-based fuzzing techniques and is not completely resolved yet. With these
capabilities, we would be able to apply grammar-based fuzzing to a wider range

http://orcid.org/0000-0001-6238-6293
http://orcid.org/0000-0003-2278-8233
http://orcid.org/0000-0002-5645-0292

2 Hannes Sochor et al.

of problems. Additionally it would be possible to utilize the inferred model for
additional security analysis, such as comparing the inferred grammars of different
implementations to determine whether they are equivalent.

While some current grammar-based fuzzing tools can be used more broadly
but suffer from mistakes as a result, others are connected to specific programming
paradigms or languages. In addition, state of the art grammar inference tools
heavily depend on a good starting set of seed inputs to be able to correctly
infer a grammar [8,10]. However, a good set of inputs is frequently not available,
which leaves much room for improvement. Especially in the setting of security
analysis that includes grammar-based fuzzing, a proper set of seeds is vital, as
the inferred grammar has to be as accurate as possible.

In this paper we propose a novel automated method for grammar-based
fuzzing, which automatically learns the grammar that is later used for fuzzing.
In our technique we start from an incomplete seed grammar that is extracted
from a small set of seed inputs. While fuzzing the target program, we actively
learn and continuously enhance this grammar. These improvements in the gram-
mar are based on information that we gain while executing our target program
with randomly generated inputs and observing the response of the program. Our
method makes use of a machine learning algorithm in combination with program
analysis, more precisely, by extracting the call tree of some executed inputs. Our
approach is generic and may be utilized regardless of the programming language
of the target program because the learning process we use is black-box and the
extraction of call trees is not based on a particular programming language. In
addition, the input set needed for our approach is significantly smaller than in
state of the art grammar inference tools [8,10]. The fundamental disadvantage of
our approach is that it is restricted to recursive top-down parsers, which account
for up to 80% of all parsers in use today [12]. Most grammatical inference tools
also share this restriction, according to [8, 10].

Our experimental results show that our fuzzing-based grammar inference
method enables us to learn a context-free grammar from tested recursive top-
down parsers with the maximum possible accuracy in every case that we consid-
ered. Our technique accomplishes this in a relatively quick time while employing
a simple program analysis technique. We further generate a human-readable
grammar that may be applied to further security analysis.

The paper is structured as follows: We provide background information on
formal definitions and learnability in language theory in Sect. 2. Our main con-
tribution can be found in Sect. 3 where we present our method in detail, followed
by an experimental evaluation of our approach in Sect. 4 as well as an in-depth
discussion on related work in Sect. 5.

2 Preliminaries

In this section we introduce the necessary notation and theory for the rest of the
paper. We assume the reader is familiar with basic concepts of language theory.
An excellent reference for that is the classical book by Hopcroft and Ullman [9].

Fuzzing-based Grammar Inference 3

Let Σ be an alphabet, i.e., a finite set of symbols. A finite sequence of symbols
taken from Σ is called a word or string over Σ. The free monoid of Σ, i.e., the
set of all (finite) strings over Σ plus the empty string λ, is denoted as Σ∗ and
known as the Kleene star of Σ. If v, w ∈ Σ∗, then vw ∈ Σ∗ is the concatenation
of v and w and |vw| = |v| + |w| is its length. If u = vw, then v is a prefix of u
and w is a suffix. A language is any subset of Σ∗.

A grammar is formally defined as a 4-tuple G = (N,Σ,P, S), where N and Σ
are finite disjoint sets of nonterminal and terminal symbols respectively, S ∈ N
is the start symbol and P is a finite set of production rules, each of the form:

(Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗.

We say G derives (or equivalently produces) a string y from a string x in
one step, denoted x ⇒ y, iff there are u, v, p, q ∈ (Σ ∪ N)∗ such that x = upv,
p → q ∈ P and y = uqv. We write x ⇒∗ y if y can be derived in zero or
more steps from x, i.e., ⇒∗ denotes the reflexive and transitive closure of the
relation ⇒.

The language of G, denoted as L(G), is the set of all strings in Σ∗ that can
be derived in a finite number of steps from the start symbol S. In symbols,

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

In this work, Σ always denotes the “input” alphabet (e.g., the set of ASCII
characters) of a given executable (binary) program p. The set of valid inputs of p
is defined as the subset of Σ∗ formed by all well formed inputs for p. In symbols:

validInputs(p) = {w ∈ Σ∗ | w is a well formed input for p}

The definition of a well formed input for a given program p depends on the
application at hand. In our setting we only need to assume that it is possible to
determine whether a given input string w is well formed or not for a program p
by simply running p with input w.

As usual, we assume that validInputs(p) is a context-free language. Conse-
quently, there is a context-free grammar Gp such that L(Gp) = validInputs(p).
Recall that a grammar is context-free if its production rules are of the form
A → α with A a single nonterminal symbol and α a possibly empty string of
terminals and/or nonterminals.

Our main contribution in this paper is a novel algorithm that takes as input a
program p and a finite (small) subset I of validInputs(p), and infers a grammar
Gp such that L(Gp) approximates validInputs(p). We say “approximates” since
it is not decidable in our setting (see [5]) whether L(Gp) = validInputs(p). To
evaluate how well L(Gp) approximates validInputs(p), we measure the precision
and recall of L(Gp) w.r.t. validInputs(p) as in [2], among others.

In our setting we first fix a procedure to calculate the probability distribution
of a language, starting from its corresponding grammar. Following [2] we use
random sampling of strings. Let G = (N,Σ,P, S) be a context-free grammar.

4 Hannes Sochor et al.

As a first step,G is converted to a probabilistic context-free grammar by assigning
a discrete distribution DA to each nonterminal A ∈ N . As usual, DA is of size
|PA|, where PA is the subset of productions in P of the form A → α. Here, we
assume that DA is uniform. We can then randomly sample a string x from the
language L(G,A) = {wi ∈ Σ | A ⇒∗ wi}, denoted x ∼ PL(G,A), as follows:

– Using DA select randomly a production A → A1 · · ·Ak ∈ PA.

– For i = 1, . . . , k, recursively sample xi ∼ PL(G,Ai) if Ai ∈ N ; otherwise let
xi = Ai.

– Return x = x1 · · ·xk.

The probability distribution PL(G) of the language L(G) is simply defined as
the probability PL(G,S) induced by sampling strings in the probabilistic version
of G defined above.

We can now measure the quality of a learned (or inferred) language L′ with
respect to the target language L in terms of precision and recall.

– The precision of L′ w.r.t. L, denoted precision(L′,L), is defined as the prob-
ability that a randomly sampled string w ∼ PL′ belongs to L. In symbols,
Prw∼PL′ [w ∈ L].

– Conversely, the recall of L′ w.r.t. L, denoted recall(L′,L), is defined as
Prw∼PL [w ∈ L′].

We say that L′ is a good approximation to L if it has both, high precision and
high recall. Note that, a language L′ = {w}, where w ∈ L, has perfect precision,
but most likely has also very low recall. On the other hand, L′ = Σ∗ has perfect
recall, but probably low precision.

It is well known that there are effective algorithms that may infer a finite
automaton (and hence also a regular grammar or regular expression) to recognize
L given a regular language L and a “teacher” that can answer membership and
equivalence queries w.r.t. L. The first and most well known algorithm of this
kind was introduced by Dana Angluin [1] and is known as L∗.

The membership query inquires as to whether a provided string is a part
of the target language. Since it pertains to determining if a particular input
to a program p belongs to validInputs(p), this can obviously be addressed in
our context. The equivalence query tests if the target language exactly matches
the language that a given automaton (or grammar in our example) recognizes.
Otherwise, the “teacher” ought to be able to offer a counterexample.

We leverage the approach NL∗ presented in [4] as part of our strategy (i.e. as
a subroutine) in our algorithm to infer context free grammars from program in-
put samples. This approach is based on L∗ and helps learning regular languages
efficiently, although it learns residual-finite state machines as opposed to deter-
ministic finite automata. The assumption is the same as for L∗: a ”teacher” who
is able to respond to membership and equivalence questions. However, because
we are unable to answer the equivalency question in our environment, we must
instead rely on statistical sampling to look for counterexamples.

Fuzzing-based Grammar Inference 5

Algorithm 1: Fuzzing-based Grammar Inference Algorithm

Input : Seed inputs I ⊆ validInputs(p), set of terminals Σ and program p
Output: Inferred grammar G′

p

1 Gs := findSeedGrammar(I, p);
2 Ns := Gs.getNonTerminals();
3 G′

p := Gs.clone();
4 for A ∈ Ns do
5 c := null;
6 repeat
7 M := runNL∗(p,A,Σ,Ns, c);
8 c := searchForCounterexample(M,p,A,Gs, 1000, 10) ▷ See Alg. 2;

9 until c = null ;
10 α := M.toRegularExpression();
11 G′

p.add(“A → α”)

12 return G′
p

3 Algorithm

The goal of our approach is to infer a context-free grammarG′
p given a program p,

a set of terminal symbols Σ as well as some valid inputs I. Ideally the language
L(G′

p) produced by our inferred grammar G′
p should be able to produce the

input language validInputs(p) of p such that L(G′
p) = validInputs(p). To achieve

our goal, we apply the following steps:

1. Seed Grammar Extraction: First we extract a seed grammar Gs from p
using the valid inputs I.

2. Seed Grammar Expansion: Next we continuously expand the rules of Gs

to achieve a better coverage of validInputs(p). We do this by utilizing the
NL∗ algorithm. While learning the rules of G′

p, we apply grammar-based
fuzzing to find counterexamples needed during the learning process.

3. Grammar-based fuzzing: At some point we have inferred a grammar G′
p

where finding a counterexample is hard because we have, or nearly have,
identified validInputs(p). We can run our grammar-based fuzzer indefinitely
at this point until we uncover another counterexample, if one exists.

In this section we first give a formal description of our algorithm, followed by
an example to better illustrate the learning process. Finally, we briefly discuss
how our algorithm may be applied in a grammar-based fuzzing setting.

3.1 Learning context-free grammars

Assume we have a program p. We want to learn a grammar Gp such that L(Gp)
approximates validInputs(p) as well as possible in terms of precision and re-
call (see preliminaries). As usual, the set of terminal symbols Σ of the target
grammar Gp, or equivalently the set of characters accepted by p, is assumed
to be known. We further assume an initial (finite) subset I of validInputs(p).
Our strategy is based on extracting a seed grammar from p using I, and then

6 Hannes Sochor et al.

Algorithm 2: Adapted Equivalence Query

Function: searchForCounterexample(M,p,A,Gs, n,m)
Input : Automaton M , program p, Seed Grammar Gs, NonTerminal A,

Set of parse Trees T and maximum number n and m of trials and
mutations per trial, respectively.

Output : Counterexample string if found. Otherwise, null .
1 G := M.toGrammar();
2 for (i := 0; i < n; i++) do
3 w := G.generateString();
4 if ¬membershipQuery(Gs, w,A, T , p) return w ▷ See Alg. 3;
5 for (j := 0; j < m; j ++) do
6 w′ := w.applyMutation();
7 if w′ /∈ L(G) ∧membershipQuery(Gs, w

′, A, T , p) return w′;

8 return null

Algorithm 3: Adapted Membership Query

Function: membershipQuery(G,w,A, T , p)
Input : Grammar G = (N,Σ, P, S), w ∈ (N ∪Σ)∗, A ∈ N \ {S}, set T of

parse trees, program p.
Output : true if A → w is deemed to be a good candidate for extending the

productions of G. Otherwise false.
1 if ¬∃Tx(T ∈ T ∧ x ∈ nodes(T) ∧ label(x) = A) return false;
2 s := deriveString(w,G) ▷ Derives s ∈ Σ∗ from w using G ;
3 TA := parseTree(A,w, s,G) ▷ Using left-most derivation and A → w ;
4 for each T ∈ T do
5 for each x ∈ nodes(T) with label(x) = A do
6 T.replaceSubTree(x, TA) ▷ Subtree rooted at node x;

7 input := T.toString();
8 if input /∈ validInputs(p) return false;
9 else

10 if p.parseTree(input) = T return true else return false;

expanding it using grammar-based fuzzing of p until we obtain a good approx-
imation of validInputs(p). Grammar-based fuzzing of p means that we execute
p with randomly sampled inputs produced from a given grammar. The concrete
strategy is described in Alg. 1.

The seed grammar extraction is done by the function findSeedGrammar(I, p)
(line 1 in Alg. 1). The set of non-terminals Ns of the seed grammar Gs is formed
by the names of all functions called by executing p with inputs from I (line 2 in
Alg. 1). The set of productions Ps of Gs is obtained as follows. For each u ∈ I,

1. Extract from p and u a parse tree Tu for u, where the internal nodes of Tu

are labelled by non-terminals in Ns and the leaves are labelled by terminals
in Σ.

Fuzzing-based Grammar Inference 7

2. For each internal node e of Tu with children c1, . . . , cn ordered from left to
right, add the rule A → L1 . . . Ln to Ps, where A,L1, . . . , Ln are the labels
of the nodes e, c1, . . . , cn, respectively.

The extraction of the parse trees Tu simply requires to track the function
calls during an execution of p with input u. This can be done in multiple ways.
In our case, we use the dynamic symbolic execution framework in our eknows
platform [13]. A perfectly good alternative is to use dynamic tainting as in [8].
We omit here the technical details of this process as they are well known.

By construction, I ⊆ L(Gs). Furthermore, if we assume that p uses a recur-
sive descent parsing technique where each procedure/function implements one
of the nonterminals of a grammar Gp such that L(Gp) = validInputs(p), then
L(Gs) ⊆ validInputs(p). Moreover, for every nonterminal symbol A of Gs, we
have that L(Gs, A) = {w ∈ Σ | A ⇒∗ w} is non empty, i.e., for every non-
terminal A of the seed grammar there is at least one finite derivation that starts
with A and produces a word in Σ∗.

Next the algorithm tries to augment the set of productions in Gs, i.e., in
the seed grammar, to better approximate validInputs(p) (line 4-11 in Alg. 1). It
proceeds by considering, for every non-terminal symbol A ∈ Ns, a new rule of
the form A → α, where α is a regular expression such that L(α) ⊆ (Ns ∪ Σ)∗.
We search for a suitable α using the NL∗ algorithm [4] couple with the procedure
described in Alg. 3 and 2 to answer the necessary membership and equivalence
queries, respectively. At the end of this process, we obtain α by translating
(following the well known standard procedure) the automaton returned by NL∗

into an equivalent regular expression (line 10).

Each time NL∗ needs to answer a membership query for a string w ∈ NS ∪Σ,
it calls the procedure described in Alg. 3 with the following parameters:

– Seed grammar Gs.
– String w.
– Non-terminal A.
– Set T of parse trees such that Tu ∈ T iff u ∈ I and Tu is the tree extracted

in the previous stage (i.e., during the inference process of the seed grammar
Gs) by tracking the function calls in the run of p with input u.

– Program p.

The function deriveString in line 2 of Alg. 3 produces a string s ∈ Σ∗ starting
from w by applying the rules of G with a grammar-based fuzzing technique.
Note that the function parseTree(A,w, s,G) in line 3 returns the parse tree
corresponding to the left-most derivation A ⇒ w ⇒∗ s of G. On the other hand,
p.parseTree(input) in line 10 returns the parse tree obtained by tracking the
function calls in the run of p with input , using the procedure explained earlier.
The remaining parts of this algorithm are self-explanatory.

Whenever NL∗ needs answer to the equivalence query for an automaton M ,
we apply the heuristic described in Alg. 2. Notice, that we do not have in this

8 Hannes Sochor et al.

parse → expr

expr → term | term+term | term−term

term → factor | factor∗factor | factor/factor
factor → 1 | 2 | 3 | (expr)

Listing 1. Target Grammar

context a properly defined regular language that NL∗ needs to learn. Instead, we
search for a counterexample string in L(M) that does not satisfy the (adapted)
membership query expressed by Alg. 3, or vice versa. The search for a coun-
terexample is performed until one is found or a maximum number of trials n has
been reached. In each trial, the algorithm first derives a string w ∈ (Ns ∪Σ) by
applying grammar-based fuzzing with a grammar G equivalent to the automaton
M (line 3). If w does not satisfy the (adapted) membership query, the algorithm
returns w as a counterexample (line 4). Otherwise, it generates a mutation w′

of w (line 6). If w′ is not in the language recognized by G (or equivalently M)
but satisfies the (adapted) membership query, then the algorithm returns w′ as
a counterexample (line 7). Otherwise, it tries different mutations of w up to a
maximum number m. For the cases considered in the experiments reported in
this paper, n = 1000 and m = 10 gives us optimal results and good performance.

3.2 Example

We will provide an example run of our algorithm to give a better understand-
ing of the formal definition above. We will use the example grammar provided
in Lst. 1 as Gp. Assume we have a parser p where validInput(p) = L(Gp). We
know the set of terminals Σ = {1, 2, 3, (,),+,−, ∗, /} as well as the initial set of
inputs I = {“1”}. We start extracting a seed grammar Gs by tracking p while
executing u ∈ I. This returns a parse tree Tu. Figure 1 displays Tu as well as
the result of transforming Tu to Gs.

Next we want to expand the rules of Gs. At this point we will use the expan-
sion process of the rule factor → 1 as a showcase example. To expand the rule,
we want to learn factor → αfactor. First we have to identify which symbols are
used by αfactor. We do this by using static analysis to identify which functions
are called by factor and add the according non-terminals as well as Σ. In our
case the set of symbols is {Σ∪expr}. Now we can apply NL* to learn αfactor. To
do so, we have to answer both membership-queries as well as equivalence-queries.
First we will give some examples on how membership-queries are answered while
learning the rules expr → αexpr as well as factor → αfactor:

1. w ∈ L(αexpr) for w = term term: We start by replacing the children of expr
in Tu with w. Next we replace left non-terminals in the tree by applying
the rules of Gs. This process is illustrated in Fig. 2. Finally, we transform
the newly built parse tree to w′ = 11 and execute p with w′. As w′ /∈
validInputs(p), we return w /∈ L(αexpr).

2. w ∈ L(αexpr) for w = “term + term”: Again, we start by replacing the
children of expr in Tu with w. Next we replace left non-terminals in the tree

Fuzzing-based Grammar Inference 9

parse

expr

term

factor

1

parse → expr

expr → term

term → factor

factor → 1

Fig. 1. From parse tree to grammar

parse

expr

term

factor

1

parse

expr

term term

parse

expr

term

factor

1

term

factor

1

Fig. 2. Parse tree evolution of query 1

parse

expr

term

factor

1

parse

expr

term + term

parse

expr

term

factor

1

+ term

factor

1

Fig. 3. Parse tree evolution of query 2

parse

expr

term

factor

1

parse

expr

term

factor

expr

parse

expr

term

factor

expr

term

factor

1

parse

expr

term

factor

1

Fig. 4. Parse tree evolution of query 3

by applying the rules of Gs as illustrated in Fig. 3. When we execute p with
input w′ = 1 + 1 we see that w′ ∈ validInputs(p). Now we check the call
tree of the execution and see that it is equivalent to the parse tree of w′, so
we return w ∈ L(αexpr).

3. w ∈ L(αfactor) for w = “expr”: Again, we replace the children of expr in Tu

with w and resolve left non-terminals with Gs. This leads to the trees shown
in Fig. 4. Executing p with input w′ = 1 shows that w′ ∈ validInputs(p).
Note that the call tree of executing w′ (see the most right tree in Fig. 4) is
not equivalent to the parse tree of w′ so we return w /∈ L(αfactor).

Next we provide an example on how we will answer an equivalence-query
while learning the rule expr → α. We convert the given automaton M to a
regular expression α = term | term + term. Next we build a new grammar Gα

containing a single rule of the form S → term | term + term with S being the
start symbol. We continue by searching for a counterexample by generating new
words using a grammar-based fuzzer using Gα. Assume we find a counterexample
c = term− term by applying a mutation to a generated word term+ term. We
return c and continue to answer membership-queries until the next equivalence-
query is performed. In our case, the next automaton would translate to the
regular expression α = term | term(−term | +term | ϵ). As this already is
the correct α, we will not be able to find another counterexample and stop

10 Hannes Sochor et al.

parse → expr

expr → term | term (−term | +term | ϵ)
term → factor | factor (/factor | ∗factor | ϵ)

factor → 1 | 2 | 3 | (expr)

Listing 2. Learned Grammar

Table 1. Experiment Results

Target Precision Recall MQ EQ Time

ExprParser 1.0 1.0 6 898 7 14s

MailParser 1.0 1.0 8 482 6 1m 42s

HelloParser 1.0 1.0 7 168 2 1m 09s

AdvExprParser 1.0 1.0 22 984 8 1m 47s

JsonParser 1.0 1.0 35 058 35 3m 23s

fuzzing when the maximum specified amount of tries is reached. Finally, we add
expr → term | term(−term | +term | ϵ) to G′

p. We repeat the process described
above for every non-terminal in Gs. The resulting grammar G′

p is shown in Lst 2.
This grammar is equivalent to Gp given in Fig. 1.

3.3 Application in Grammar-based Fuzzing

While learning a rule A → α we systematically explore a small part of p, more
specifically we explore the function which is contributed to the non-terminal A.
When an arbitrary membership-query is executed, we guide the parser to the
exact part of the code where the query is parsed by executing the query in a
known context. This has the effect that, while performing an equivalence query,
we can effectively fuzz exactly that part of the code until we find a counterexam-
ple. Additionally, a positive side effect is that the mutations we insert will most
likely explore border-line cases within the context of A which reduces the search
space effectively. As the learning of a rule A → α is completely independent
from learning another, we may learn all the rules simultaneously. This enables
us to run one grammar-based fuzzer targeting each function of p separately for
an infinite amount of time, pausing fuzzing only when we are able to fine-tune
the used grammar by a deterministic search with NL*.

4 Experiments & Evaluation

In this section we evaluate the performance of our fuzzing-based grammar in-
ference method. Given a single input word, we apply our technique to dif-
ferent parsers and calculate the precision and recall of the inferred grammar.
For each test run we start with a given target grammar Gp and automatically
generate a parser p that accepts our target grammar Gp using the compiler-
compiler Coco/R1. We apply our fuzzing-based grammar inference algorithm

1 https://ssw.jku.at/Research/Projects/Coco/

https://ssw.jku.at/Research/Projects/Coco/

Fuzzing-based Grammar Inference 11

0 0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Membership Queries (∗104)

Precision

Recall

Fig. 5. Json Learning process

on this setup. If a specified maximum amount of allowed membership queries
has been reached without finding a counterexample, execution is stopped and
the current state of the inferred grammar G′

p is returned. Finally, we calculate
precision(L(G′

p), L(Gp)) and recall(L(G′
p), L(Gp)) by randomly sampling 1 000

words each.

Table 1 displays the results, with the first column indicating the targeted
parser. The second and third columns show the resulting precision and recall of
our extracted grammar, followed by the total amount of unique membership-
queries (MQ) performed, the total number of equivalence-queries (EQ) per-
formed, and the time elapsed. The target grammar Gp implemented by each
parser p as well as the inital input I for each test-run is given in App. A. Our re-
sults in Tbl. 1 show that we are able to recover a grammar that perfectly matches
the target grammar for the 1 000 inputs examined. This demonstrates that our
technique can recover a context-free grammar from a recursive top-down parser.

In the following we provide more details for the experiment “JsonParser”. The
target grammar is given in Lst. 3. Listing 4 shows our learned grammar. The
learned grammars of the other parsers are given in the appendix. Additionally
Fig. 5 shows a more detailed analysis of the learning process for “JsonParser”.
We calculate precision(L(G′

p), L(Gp)) and recall(L(G′
p), L(Gp)) every time an

equivalence query is performed, where G′
p is the current state of the inferred

grammar. Again, we use 1 000 randomly sampled words each. As can be seen in
Fig. 5, precision stays at 1 most of the time during the learning process, due to
the fact that L(Gs) ⊆ L(Gp) (see Sect. 3.1).

If only a portion of the desired language is accepted by the rule at the mea-
surement point, precision remains at 1. Precision may gradually drop as you
learn more rules over time. This could occur when attempting to identify the
correct body of a rule, in particular when the rule accepts a superset of the

12 Hannes Sochor et al.

Initial Input: “{‘a’. 1e − 0 , ‘’ : [true, true]}”

Json → Element.

Element → Ws Value Ws.

Ws → " ".

Value → Object | Array |
String | Number |
"true" | "false" | "null".

Object → "{" Ws [String Ws ":"

Element ["," Members]] "}".

Members → Member ["," Members].

Member → Ws String Ws ":" Element.

Array → "[" Ws [Value Ws

["," Elements]] "]".

Elements → Element ["," Elements].

String → "’" Characters "’".

Characters → ϵ | Character Characters.

Character → "a" | "b" | "c".
Number → Integer Fraction

Exponent.

Integer → ["−"] ("0" |
Onenine [Digits]).

Digits → Digit [Digits].

Digit → "0" | Onenine.
Onenine → "1" | "2" | "3".

Fraction → ϵ | "." Digits.

Exponent → ϵ | "E" Sign Digits |
"e" Sign Digits.

Sign → ϵ | "+" | "−".

Listing 3. Json Target Grammar

Json → Element.

Element → Ws Value Ws.

Ws → " ".

Value → Object | Array |
String | Number |
"true" | "false" | "null".

Object → "{" (Ws "}" | Ws ("}" |
String Ws ":" (Element

"}" | Element ("}" | ","
Members "}")))).

Members → Member |
Member ("," Members | ϵ).

Member → Ws String Ws ":" Element.

Array → "[" (Ws "]" | Ws ("]" |
Value (Ws "]" | Ws ("]" |
"," Elements "]")))).

Elements → Element |
Element ("," Elements | ϵ).

String → "’" Characters "’" .

Characters → ϵ | Character Characters.

Character → "a" | "b" | "c".
Number → Integer Fraction

Exponent.

Integer → "0" | Onenine |
Onenine (Digits | ϵ) |
"−" (Onenine | Onenine
(Digits | ϵ) | "0").

Digits → Digit | Digit (Digits | ϵ).
Digit → "0" | Onenine.

Onenine → "1" | "2" | "3".
Fraction → ϵ | "." Digits.

Exponent → ϵ | "E" Sign Digits |
"e" Sign Digits.

Sign → ϵ | "+" | "−".

Listing 4. Json Learned Grammar

wanted language. These inaccuracies are automatically fixed when a counterex-
ample is found. For example the drop in precision in Fig. 5 occurs while learning
a rule which consumes integers. The learned automaton accepts words containing
preceding zeros as well as words containing more than one “-” at the beginning.
Both are not accepted by the parser. As such, the precision of the learned gram-
mar was lowered to 0.5. After the drop in precision, first the issue with multiple
“-” symbols is fixed by providing a counterexample. This raises precision to 0.8.
Finally, after providing another counterexample and consequently disallowing
preceding zeros, the rule is learned correctly and precision increases back to 1.

In terms of recall, we see a consistent increase over time as the learnt grammar
is expanded, and as a result, the learned language grows significantly. When a
rule that consumes terminals is learned, the boost in recall is often greater. For
example, the final spike in recall occurs while learning the rules for parsing digits
and mathematical symbols.

We must remark that we have rarely used optimizations in our implementa-
tion, which leaves a lot of room for improvement. Possible performance improve-
ments include (i) using hash-tables to store previously seen membership-queries

Fuzzing-based Grammar Inference 13

instead of a plain-text list, (ii) replacing the early-parser used to determine
whether a grammar produces a given word with something more efficient, (iii)
using paralellization to speed up fuzzing, and (iv) to simultaneously learn the
different rules of the seed grammar.

5 Related Work

Extracting context-free grammars for grammar-based fuzzing is not a new idea.
Several methods exist for grammar learning which try to recover a context-free
grammar by means of membership-queries from a black-box, such as by begin-
ning with a modestly sized input language and then generalizing it to better fit
a target language [2,15]. Another approach synthesizes a grammar-like structure
during fuzzing [3]. However, this grammar-like structure has a few shortcomings,
e.g., multiple nestings that are typical in real-world systems are not represented
accurately [8]. Other methods use advanced learning techniques to derive the in-
put language like neural networks [7] or Markov models [6]. Although black-box
learning is generally promising, it suffers from inaccuracies and incompleteness
of learned grammars. It is shown in [1] that learning a context-free language from
a black box cannot be done in polynomial time. As a result, all pure black-box
methods must give up part of the accuracy and precision of the learnt grammars.

Due to limitations with black-box approaches there exist several white-box
methods to recover a grammar. If full access to the source code of a program is
given, described methods fall under the category of grammar inference. Known
methods for inferring a context-free language using program analysis include au-
togram [10] and mimid [8]. Unlike its predecessor autogram, which relies on
data flow, mimid uses dynamic control flow to extract a human readable gram-
mar. Finally, [11] describes how a grammar can be recovered using parse-trees
of inputs, which is then improved with metrics-guided grammar refactoring. All
of the aforementioned grammar inference methods share the same flaw: They all
primarily rely on a predetermined set of inputs from which a grammar is derived
that corresponds to this precise set of inputs. If some parts of a program are not
covered by the initial set of inputs, the resulting grammar will also not cover
these parts. However there exist some methods that attempt to automatically
generate valid input for a given program, such as symbolic execution [14].

6 Conclusion

Our main contribution is a novel approach for grammar inference that combines
machine learning, grammar-based fuzzing and program analysis. Our approach,
in contrast to other efforts, reduces reliance on a good set of seed inputs while
keeping other advantageous features of grammar inference techniques. This re-
duction in the original input set causes us to perform more membership queries
since we need to uncover paths that we lose by randomly sampling the input
set. We exchanged some of the benefits of complex program analysis, such as
dynamic symbolic execution, for less complex program analysis, such as call tree

14 Hannes Sochor et al.

extraction, to speed up the execution because our approach was designed with
grammar-based fuzzing in mind. This was done in order to process such a vast
number of inputs effectively. We can cease grammar inference and resume fuzzing
the target program using the inferred grammar whenever we are certain that we
have a good enough approximation of our input language. Despite the trade-offs
outlined above, our preliminary findings show that we can still learn the target
input language accurately in a reasonable amount of time, especially for more
complicated input languages like JSON.

In the future, we aim to improve our learning technique by looking into
ways to learn context-free grammars from any program without being restricted
by recursive top-down parsers. Furthermore, we want to enhance the current
implementation with a range of performance optimizations so that we may utilize
it to uncover security problems in a real-world scenario.

References

1. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50(2), 336–355 (1995)

2. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing program input gram-
mars. In: PLDI. pp. 95–110. ACM (2017)

3. Blazytko, T., Aschermann, C., Schlögel, M., Abbasi, A., Schumilo, S., Wörner, S.,
Holz, T.: GRIMOIRE: synthesizing structure while fuzzing. In: USENIX Security
Symposium. pp. 1985–2002. USENIX Association (2019)

4. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI. pp. 1004–1009 (2009)

5. E.Gold: Language identification in the limit. Inf. Control. 10(5), 447–474 (1967)
6. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: Pulsar: Stateful

black-box fuzzing of proprietary network protocols. In: SecureComm. LNICST,
vol. 164, pp. 330–347. Springer (2015)

7. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: machine learning for input fuzzing.
In: ASE. pp. 50–59. IEEE Computer Society (2017)

8. Gopinath, R., Mathis, B., Zeller, A.: Inferring input grammars from dynamic con-
trol flow. CoRR abs/1912.05937 (2019)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

10. Höschele, M., Zeller, A.: Mining input grammars with AUTOGRAM. In: ICSE
(Companion Volume). pp. 31–34. IEEE Computer Society (2017)

11. Kraft, N., Duffy, E., Malloy, B.: Grammar recovery from parse trees and metrics-
guided grammar refactoring. IEEE Trans. Software Eng. 35(6), 780–794 (2009)

12. Mathis, B., Gopinath, R., Mera, M., Kampmann, A., Höschele, M., Zeller, A.:
Parser-directed fuzzing. In: PLDI. pp. 548–560. ACM (2019)

13. Moser, M., Pichler, J.: eknows: Platform for multi-language reverse engineering and
documentation generation. In: 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). pp. 559–568 (2021)

14. Moser, M., Pichler, J., Pointner, A.: Towards attribute grammar mining by sym-
bolic execution. In: SANER. pp. 811–815. IEEE (2022)

15. Wu, Z., Johnson, E., Yang, W., Bastani, O., Song, D., Peng, J., Xie, T.: REINAM:
reinforcement learning for input-grammar inference. In: ESEC/SIGSOFT FSE. pp.
488–498. ACM (2019)

Fuzzing-based Grammar Inference 15

A Experiment Details

A.1 ExprParser

Initial Input: “1”

COMPILER Expr
PRODUCTIONS

Expr = Term [(”+” | ”−”) Term] .
Term = Factor [(”∗” | ”/”) Factor] .
Factor = ”1” | ”2” | ”3” | ” (” Expr ”) ” .

END Expr .

Listing 5. Expr Target Grammar

COMPILER Parse
PROSUCTIONS

Parse = expr .
expr = term | term (”−” term | ”+” term | ϵ) .
term = f a c t o r | f a c t o r (”/” f a c t o r | ”∗” f a c t o r | ϵ) .

f a c t o r = ”1” | ”2” | ”3” | ” (” expr ”) ” .
END Parse .

Listing 6. Expr Learned Grammar

A.2 MailParser

Initial Input: “a@a.aa”

COMPILER Mail
TOKENS

Char = ”a” . . ”z ” .
PRODUCTIONS

Mail = St r ing ”@” St r ing ” .” Tag .
S t r ing = Char { Char } .
Tag = Char Char [Char] .

END Mail .

Listing 7. Mail Target Grammar

COMPILER Parse
PRODUCTIONS
Parse = s t r i n g ”@” s t r i n g ” .” tag .
s t r i n g = char s t r i n g q 1 .
s t r i n g q 1 = (char s t r i n g q 1 | ϵ) .
tag = char (char | char (char | ϵ)) .
char = (”z” | ”y” | ”x” | ”w” | ”v” | ”u” | ” t ” | ” s ” | ” r ” |

”q” | ”p” | ”o” | ”n” | ”m” | ” l ” | ”k” | ” j ” | ” i ” | ”h”
| ”g” | ” f ” | ”e” | ”d” | ”c” | ”b” | ”a”) .

END Parse .

Listing 8. Mail Leanred Grammar

16 Hannes Sochor et al.

A.3 HelloParser

Initial Input: “hello”

COMPILER Hel lo
PRODUCTIONS

Hel lo = (”H” | ”h”) (”E” | ”e”) (”L” | ” l ”)
(”L” | ” l ”) (”O” | ”o”) .

END Hel lo .

Listing 9. Hello Target Grammar

COMPILER Parse
PRODUCTIONS
Parse = (”h” (”e” (” l ” (” l ” (”o” | ”O”) | ”L” (”o” | ”O”))

| ”L” (” l ” (”o” | ”O”) | ”L” (”o” | ”O”))) | ”E” (
” l ” (” l ” (”o” | ”O”) | ”L” (”o” | ”O”)) | ”L” (” l ” (”
o” | ”O”) | ”L” (”o” | ”O”)))) | ”H” (”e” (” l ” (” l ”
(”o” | ”O”) | ”L” (”o” | ”O”)) | ”L” (” l ” (”o” | ”O”
) | ”L” (”o” | ”O”))) | ”E” (” l ” (” l ” (”o” | ”O”)

| ”L” (”o” | ”O”)) | ”L” (” l ” (”o” | ”O”) | ”L” (”o”
| ”O”))))) .

END Parse .

Listing 10. Hello Learned Grammar

A.4 AdvExprParser

Initial Input: “1”

COMPILER AdvExpr
PRODUCTIONS

AdvExpr = Expr .
Expr = Term { (”+” | ”−”) Term } .
Term = Factor { (”∗” | ”/”) Factor } .
Factor = Num | ” (” Expr ”) ” .
Num = Dig i t { Dig i t } .
D ig i t = ”1” | ”2” | ”3” .

END AdvExpr .

Listing 11. AdvExprParser Target Grammar

COMPILER Parse
PRODUCTIONS
AdvExpr = Expr .
Expr = Term Expr q2 .
Expr q2 = (”−” Term Expr q2 | ”+” Term Expr q2 | ϵ) .
Term = Factor Term q2 .
Term q2 = (”/” Factor Term q2 | ”∗” Factor Term q2 | ϵ) .
Factor = (Num | ” (” Expr ”) ”) .
Num = Dig i t Num q1 .

Fuzzing-based Grammar Inference 17

Num q1 = (Dig i t Num q1 | ϵ) .
D ig i t = (”3” | ”2” | ”1”) .
Parse = AdvExpr .
END Parse .

Listing 12. AdvExprParser Learned Grammar

A.5 JsonParser

Initial Input: “{ ‘a’ . 1e− 0 , ‘’ : [true , true] }”

COMPILER Json
PRODUCTIONS

Json = Element .
Value = Object | Array | St r ing | Number |

” true ” | ” f a l s e ” | ” nu l l ” .
Object = ”{” Ws [S t r ing Ws ” :” Element

[” , ” Members]] ”}” .
Members = Member [” , ” Members] .
Member = Ws St r ing Ws ” :” Element .
Array = ” [” Ws [Value Ws [” ,” Elements]] ”] ” .
Elements = Element [” ,” Elements] .
Element = Ws Value Ws.
S t r ing = ” ’” Characters ” ’ ” .
Characters = ”” | Character Characters .
Character = ”a” | ”b” | ”c ” .
Number = In t eg e r Fract ion Exponent .
I n t eg e r = [”−”] (”0” | Onenine [D i g i t s]) .
D i g i t s = Dig i t [D i g i t s] .
D ig i t = ”0” | Onenine .
Onenine = ”1” | ”2” | ”3” .
Fract ion = ”” | ” .” D i g i t s .
Exponent = ”” | ”E” Sign D ig i t s | ”e”

Sign D ig i t s .
Sign = ”” | ”+” | ”−” .
Ws = ” ” .

END Json .

Listing 13. Json Target Grammar

COMPILER Parse
PRODUCTIONS
Json = Element .
Element = Ws Value Ws.
Value = (” true ” | ” nu l l ” | ” f a l s e ” | St r ing | Object | Number

| Array) .
Object = ”{” (Ws ”}” | Ws (”}” | St r ing Ws ” :” (Element ”}” |

Element (”}” | ” ,” Members ”}”)))) .
Array = ” [” (Ws ”]” | Ws (”]” | Value (Ws ”]” | Ws (”]” | ” ,”

Elements ”] ”)))) .

18 Hannes Sochor et al.

S t r ing = ””” Characters ””” .
Number = In t eg e r Fract ion Exponent .
Ws = ” ” .
Members = (Member | Member (” ,” Members | ϵ)) .
Member = Ws St r ing Ws ” :” Element .
Elements = (Element | Element (” ,” Elements | ϵ)) .
Characters = (ϵ | Character Characters) .
Character = (”c” | ”b” | ”a”) .
I n t eg e r = (Onenine | Onenine (D i g i t s | ϵ) | ”0” | ”−” (Onenine

| Onenine (D i g i t s | ϵ) | ”0”)) .
Fract ion = (ϵ | ” .” D i g i t s) .
Exponent = (”e” Sign D ig i t s | ϵ | ”E” Sign D ig i t s) .
Onenine = (”3” | ”2” | ”1”) .
D i g i t s = (Dig i t | Dig i t (D i g i t s | ϵ)) .
D ig i t = (Onenine | ”0”) .
Sign = (ϵ | ”−” | ”+”) .
Parse = Json .
END Parse .

Listing 14. Json Learned Grammar

	Fuzzing-based Grammar Inference

