
Fuzzing and Delta Debugging
And-Inverter Graph Verification Tools

Daniela Kaufmann1 and Armin Biere2

1 Johannes Kepler University Linz, Austria &
Software Competence Center Hagenberg, Austria

2 Albert-Ludwigs-University Freiburg, Germany

Tests and Proofs
05. July 2022

Ensuring correctness of verification tools is

equally important as the correctness of the actual problems

they try to establish.

2

Contributions

• Incentive towards investing effort in automated testing and
debugging of automated reasoning tools

• Focus is on hardware verification

Incentive:

• Generation-based fuzzer MultAIGenFuzzer

• Mutation-based fuzzer AIGoFuzzing

• Delta debugging tool AIGdd2

Tools:

• Evaluate presented fuzzing tools on multiplier verification tools

• Investigate correctness and robustness.
Experiments:

3

Correctness & Robustness

Correct

Tool returns
“correct” for

correct
multipliers.

Tool returns
“incorrect” for

incorrect
multipliers.

Robust

Tool does not
crash on inputs.

4

Use Case: Multiplier Verification

• In recent years verification of gate-level integer multipliers has made significant progress:
• [SayedGroßeKühneSoekenDrechsler-DATE16], [SayedGroßenSoekenDrechsler-FMCAD16], [RitircBiereKauers-FMCAD17], [MahzoonGroßeDrechsler-ICCAD18],

[RitircBiereKauers-DATE18], [MahzoonGroßeDrechsler-DAC19], [KaufmannBiereKauers-FMCAD19], [MahzoonGroßeSchollDrechsler-DATE20], [KaufmannBiere-TACAS21],

[MahzoonGroßeDrechsler-TCAD21], [KaufmannBeameBiereNordström-DATE22]

• [MahzoonGroßeSchollDrechsler-DATE20] → DyPoSub

• [KaufmannBiere-TACAS21] → AMulet2

5

Related Work

Automated Reasoning & Fuzzing

• Satisfiability Modulo Theories (SMT) [BrummayerBiere-SMTWorkshop09], [MansurChristakisWüstholzZhang-FSE2020]

• Satisfiability Checking (SAT) [BrummayerLonsingBiere-SAT10]

• Quantified Boolean formulas (QBF) [BrummayerLonsingBiere-SAT10]

• Interactive Provers [LampropoulosHicksPierce-OOPSLA19]

• Current research in multiplier verification focuses on efficiency and automation.

• We are not aware of research of fuzzing and debugging for tools that read AIGs.

6

Preliminaries

AIGs, Fuzzing & Delta Debugging
7

And-Inverter Graphs - AIGs

• [KuehlmannParuthiKrohmGanai-TCAD02]

• Directed acyclic graph

• Represents the structural implementation of a circuit

• Rarely structural efficient, but efficient to manipulate

• Consists of two-input nodes

• Nodes represent logical conjunction 𝑙14 = 𝑙10 ∧ 𝑙12

• Markings on edges represent negation 𝑙16 = 𝑙8 ∧ ¬𝑙10

8

Fuzzing

• Technique for automated software testing

• Idea:

• Treat the program as a black-box

• Use random, invalid and unexpected inputs

• Detect failures and tool crashes

• History:

• Originated in the 90’s: random inputs detected many errors in UNIX command line programs

• Since then, a variety of automated testing approaches and tools have been developed (ClusterFuzz by Google, or OneFuzz by

Microsoft)

9

Fuzzing Techniques

Input

Usage

Generation-based fuzzers

Mutation-based fuzzers

Structural

Knowledge

Black-box fuzzers

White-box fuzzers uses program analysis to systematically
generate inputs that increase code coverage

Black-box fuzzing is faster and can easily be parallelized;

but may only trigger easy-to-reach bugs.

10

generate random input from scratch

mutate existing input seeds by making small

modifications

are completely unaware of the internal

structure of the program under test

MultAIGenFuzzer AIGoFuzzing

• Generation-based

• Black-box

Generates multiplier circuits from scratch
by combining building blocks.

• Mutation-based

• Black-box

Mutates AIGs without violating structural
constraints.

11

Fuzzing Tools

Delta Debugging

• Aims to reduce manual workload of debugging software problems

• Minimizes failure-inducing inputs

• Idea:

• Binary search strategy

• Repeatedly remove smaller and smaller parts of the failure inducing input

• Until a minimal fix point is reached.

• AIGdd2 removes AIG nodes to narrow down the failure cause.

12

Tools

MultAIGenFuzzer, AIGoFuzzing, AIGdd2

13

Multipliers

(

𝑖=0

𝑛−1

2𝑖𝑎𝑖) ∗ (

𝑖=0

𝑛−1

2𝑖𝑏𝑖) =

𝑖=0

2𝑛−1

2𝑖𝑠𝑖

• For each component, several algorithms are available
• Partial Product Generation: Simple conjunction, Radix Booth Encoding

• Partial Product Accumulation: Array, Wallace-tree, compressor trees, …

• Final Stage Adder: Ripple-Carry, Carry-lookahead, Ladner-Fischer,…

• All components have certain patterns

• Their number is limited

• Danger of introducing a bias in verification algorithms

Generation-based Fuzzer - MultAIGenFuzzer

• Generate correct multipliers with random patterns

• Random multiplier generation using MultAIGenFuzzer:

• Partial product generation:

• Generate partial products 𝑝𝑖𝑗 = 𝑎𝑖𝑏𝑗 using simple conjunction

• Assign partial products to slices

• Partial product accumulation

• Select two or three random elements of a random slice

• Addition using half- and full-adders

• Repeat this step until all slices contain at maximum two elements

• Final Stage adder

• Using a mixture of full-adders, half-adders and carry-lookahead adders

Mutation-based Fuzzing - AIGoFuzzing

• Input: AIGs

• Small modifications in the AIG that may or may not change the specification

• Not specifically designed for multiplier verification and can be used on any given AIG

16

Seed Swapping Output

𝑙14 = 𝑙10 ∧ 𝑙12
⇒

𝑙14 = ¬𝑙10 ∧ 𝑙12

• Special case of Swapping signs

• Negates specification for AIGs
with single outputs

17

AIGoFuzzing - Mutations

Swapping Signs Inserting a constant

• Four cases: ({0,1},{∧,∨})
• 𝑣 = 𝑣 ∨ 0 = 𝑣 ∧ 1
• 𝑣 ≠ 𝑣 ∨ 1 ≠ 𝑣 ∧ 0

Modifying Node Input

𝑙16 = 𝑙8 ∧ ¬𝑙10
⇒

𝑙16 = 𝑙8 ∧ 𝑙2

Affects specification Affects specification Affects specification Affects specification

in 50% of the cases

Delta Debugging with Slices – AIGdd2

• Minimizes failure-inducing AIGs while preserving errors

• AIGdd2 does not find THE smallest possible failure-inducing input, but it will find a minimal example.

• Re-implementation of AIGdd [BiereHeljankoWieringa-FMV11]

• Novel:

• Option to limit structural changes of the AIG

• Slicing based delta debugging approach that allows us to shrink the bit-width of multipliers

• Set most significant output and input bits to 0 and propagate.

• Afterwards we use binary-search based approach of AIGdd to further shrink the size of the sliced AIG

18

Delta Debugging with Slices – AIGdd2

19

4-bit multiplier 2-bit multiplier

Experiments

Fuzzing, Tests & Proofs
20

DyPoSub AMulet2

21

Reduction Engines

Input
• Multiplier given as AIG

Verification

• Polynomial Encoding

• Reduction using dynamic ordering

Output

• Yes/No Answer

Input
• Multiplier given as AIG

Verification

• Polynomial Encoding

• Reduction using static ordering

Output

• Yes/No Answer

• Proof in case of Yes-Answer

• Counterexample in case of No-Answer

Fuzzing, Tests and Proofs

Evaluate robustness and correctness of AMulet2 and DyPoSub

• Fix possible errors in AMulet2.1 and release AMulet2.2

1. Robustness:

• Use MultAIGenFuzzer to detect overfitting of reduction algorithms

• Use AIGoFuzzing to detect crashes

• Combine AIGoFuzzing and MultAIGenFuzzer

2. Correctness:

• We use differential testing to deduce the correctness of both tools.

22

Differential Testing

23

Experiments

Evaluation
24

Experiments

• AMulet2.1 is robust and correct

• AMulet2.2 is robust and correct

• DyPoSub is robust and correct

25

Experiments

• AMulet2.1 has time-outs → overfitting

• AMulet2.2 has time-outs → overfitting

• DyPoSub is robust and correct

26

Experiments

• AMulet2.1 is not robust

• AMulet2.2 is robust and correct

• DyPoSub is unsound on 6 benchmarks

27

Experiments

• AMulet2.1 is not robust

• AMulet2.2 is robust and correct

• DyPoSub is incomplete on 258 benchmarks

28

Experiments – Delta Debugging

29

Summary of the Experiments

Generation-based Fuzzing

• AMulet2 is overfitted to existing FSAs.

• DyPoSub is robust and correct on these benchmarks

Mutation-based Fuzzing

• AMulet2.1 has robustness issues, which could be fixed in AMulet2.2

• DyPoSub is unsound and incomplete

30

Conclusion

• Software is only as good as its robustness and correctness

• Generation- and mutation-based fuzzing techniques randomly generate input to tackle issues

• Delta debugging allows us to generate smaller failure-inducing benchmarks

Observation:

• Randomly shuffling the structure of available inputs helps to avoid overfitting

• Even small mutations can reveal defects efficiently

• Verification tools need to produce proof certificates to prevent false results

• Shrinking failure-inducing inputs using delta debugging allows to zoom in on defects

31

