
Adding Dual Variables to Algebraic Reasoning
for Gate-Level Multiplier Verification

Daniela Kaufmann∗, Paul Beame†, Armin Biere∗,‡, Jakob Nordström§
∗Johannes Kepler University Linz, Austria †University of Washington, Seattle, WA, USA

‡Albert-Ludwigs-University Freiburg, Germany §University of Copenhagen, Denmark & Lund University, Sweden

Abstract—Algebraic reasoning has proven to be one of the
most effective approaches for verifying gate-level integer mul-
tipliers, but it struggles with certain components, necessitating
the complementary use of SAT solvers. For this reason validation
certificates require proofs in two different formats. Approaches to
unify the certificates are not scalable, meaning that the validation
results can only be trusted up to the correctness of compositional
reasoning. We show in this paper that using dual variables in
the algebraic encoding, together with a novel tail substitution and
carry rewriting method, removes the need for SAT solvers in the
verification flow and yields a single, uniform proof certificate.

I. INTRODUCTION

Formal verification of arithmetic circuits helps prevent issues
like the infamous Pentium FDIV bug. Although several
techniques for circuit verification have been developed, the
problem of fully automatic verification of arithmetic circuits
is still considered to be hard. In particular, integer gate-level
multipliers are challenging to verify due to their structural
composition. Just to point out some issues with previous
approaches used for multiplier verification, decision diagrams
rely on manual decomposition [4], satisfiability checking (SAT)
does not scale [3], and automated reasoning using theorem
provers relies on hierarchical information [20].

Currently, the most successful technique for flattened gate-
level multipliers is based on algebraic reasoning [5], [10], [16],
[17], [19], where the circuit is modeled as a set of polynomials,
and a polynomial reduction algorithm is used to check whether
the circuit specification is implied by these polynomials.

However, certain multipliers pose a challenge for algebraic
reasoning. More precisely, when the final-stage (FS) adder
is a generate-and-propagate (GP) adder [18], the size of the
intermediate reduction results increases drastically, which leads
to a non-termination of the reduction. The reason is that these
specific adders are composed of sequences of OR-gates with
common inputs, which are not shared internally. The encoding
of OR-gates by polynomials grows exponentially in the number
of inputs [10]. The specification polynomial must to be reduced
by these exponential-size polynomials before any cancellation
of common inputs happens, causing the blow-up.

To overcome this issue, several preprocessing techniques
have been proposed. The approach in [16] aims to identify
and extract atomic blocks of the multiplier. A follow-up

D. Kaufmann and A. Biere were supported by the LIT AI Lab funded by the
state of Upper Austria. J. Nordström was supported by the Swedish Research
Council grant 2016-00782 and the Independent Research Fund Denmark grant
9040-00389B. P. Beame was supported by NSF-SHF grant CCF-1714593.

method [17] applies a dynamic substitution order to limit the
size of the intermediate reduction results.

In [12] the problem of the OR-gates is explicitly addressed
and GP adders are replaced by simple ripple carry (RC) adders
that do not contain sequences of OR-gates. The equivalence
of the adders is verified using SAT solving and the rewritten
multiplier is verified using computer algebra. This method [12]
is, to our knowledge, the only approach that additionally
provides formal proof certificates to validate the verification
result. Combining computer algebra and SAT solving produces
certificates in two different proof formats: PAC [14] for
algebraic reasoning and DRUP [8] for SAT solving. Hence a
gap is left in the validation arguments. It is possible to simulate
DRUP proofs in PAC [13], but this method does not scale and
generates a tremendous overhead in the proof certificate.

In this paper we extend the approach of [12] by adding dual
variables for positive and negative literals in the polynomial
encoding, which results in a compact representation. The
theoretical utility of dual variables in keeping polynomial rea-
soning compact (in particular capable of efficiently representing
resolution-based reasoning) has long been known [1] and its
precise utility has recently been investigated [7]. On the
applied side, dual variables were considered in [19], however
the authors allow only one sign of a literal within the same
polynomial, whereas we do not restrict the signedness. Further-
more, dual variables allow algebraic simulation of resolution
in practice [13], but, as discussed above, that approach does
not scale and can barely handle 32-bit multipliers. One reason
for the difficulty in making practical use of dual variables is
that the key method for polynomial inference in practice, the
Gröbner basis algorithm, relies on a reduction method based
on a fixed variable order that will immediately eliminate one of
each pair of dual variables by re-expressing it using its partner.

Our novel carry rewriting approach also introduces the
concept of tail substitution, which enables sharing. Combining
these contributions allows us to eliminate the SAT solver
invocation in multiplier verification. This not only speeds up
verification by up to an order of magnitude, and accordingly
scales to larger bit-widths, but also directly produces a compact,
uniform and easy-to-check proof certificate in PAC.

II. PRELIMINARIES

We briefly review algebraic circuit verification as per the
approach in [12] and describe the algebraic proof system
PAC [14]. The mathematical notation follows [6].



In this work we focus on gate-level unsigned integer
multipliers described as and-inverter graphs (AIGs) with
input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} output bits
s0, . . . , s2n−1 ∈ {0, 1}, and the internal gates defined by
l1, . . . , lk ∈ {0, 1}. Let the set of all these variables be
X = {a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lk, s0, . . . , s2n−1}.

In algebraic reasoning, the circuit is modeled using multivari-
ate polynomials and correctness is established by showing that
the specification – the desired relation between the outputs and
inputs – is implied by the polynomial encoding of the circuit.
A multiplier C is correct iff for all inputs ai, bi ∈ {0, 1}, the
specification L = 0 holds, where

L = −
∑2n−1

i=0 2isi +

(∑n−1
i=0 2iai

)(∑n−1
i=0 2ibi

)
.

A term τ = xd1
1 · · ·xdr

r is a power product of variables for
d1, . . . , dr ∈ N. We denote the set of terms by [X]. The
degree of a term is deg(τ) =

∑r
i=1 di. A monomial cτ is a

term τ multiplied by c ∈ Z, and a polynomial p is a finite sum
of monomials. We write q|p if polynomial p is a multiple of
polynomial q. As we will only consider polynomial equations
with right-hand side zero, we write f instead of f = 0.

An order ≤ is fixed on the set of terms such that 1 ≤ τ and
σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2 for all terms τ, σ1, σ2. Such an order
is a lexicographic term order if for all terms σ1 = xd1

1 · · ·xdr
r ,

σ2 = xe11 · · ·xerr we have σ1 < σ2 iff there exists i with dj =
ej for all j < i, and di < ei. The largest term (w.r.t. ≤) in a
polynomial p = cτ + · · · is called the leading term lt(p) = τ
which, together with the leading coefficient c, constitutes the
leading monomial cτ , and the tail of p is tail(p) = p− cτ .

The semantics of each circuit gate implies a polynomial
relation as shown in Fig. 1 (covering all cases for AIGs).

Let G(C) ⊆ Z[X] be the set of gate polynomials that
contains the corresponding polynomial for each gate. All
variables x ∈ X are in {0, 1} and we enforce this property by
the set of Boolean value constraints B(X) = {x(1 − x) |
x ∈ X} ⊆ Z[X]. The polynomials in G(C) ∪ B(X)
are ordered according to a lexicographic order, the so-called
reverse topological term ordering (RTTO), such that the output
variable of any gate is always greater than its inputs [15].

The question whether L is implied by G(C) ∪ B(X) ⊆
Z[X] can be answered by solving a so-called ideal membership
problem [12]. A set of polynomials I ⊆ Z[X] is called an ideal
if for all p1, p2 ∈ I and all q ∈ Z[X] it holds that p1 + p2 ∈ I
and qp1 ∈ I . A set G = {g1, . . . , gs} ⊆ Z[X] is called a basis
of I if I = {g1h1 + · · ·+ gshs | h1, . . . , hs ∈ Z[X]}. We say
I is generated by G and write I = 〈G〉.

If we let J(C) = 〈G(C) ∪ B(X)〉 ⊆ Z[X] be the ideal
generated by G(C) ∪B(X), we see that the circuit C fulfils
its specification if and only if L ∈ J(C) [12].

We can determine membership in J(C) by finding a D-
Gröbner basis [2], of J(C) then applying multivariate polyno-
mial reduction and checking whether the unique final result is
zero. The set of polynomials G(C)∪B(X) is automatically a
D-Gröbner basis with respect to RTTO for J(C) ⊆ Z[X] [12],
and hence the correctness of the circuit can be verified by

l1 l2

l3

l3 = l1 ∧ l2
−l3 + l1l2

l1

l4

l2

l4 = l1 ∧ ¬l2
−l4 − l1l2 + l1

l1 l2

l5

l5 = ¬l1 ∧ ¬l2
−l5 + l1l2 − l1 − l2 + 1

Figure 1: All polynomial encodings covered by AIG nodes

reducing L by these polynomials. Reductions by B(X) are
usually handled implicitly by immediately reducing exponents
greater than one in order to speed up the computation.

Proof certificates, such as those in PAC [14], allow monitor-
ing the verification process. These proofs can be generated as
a by-product of the reasoning technique. A PAC proof consists
of three components: (i) the constraint set of polynomials S,
(ii) the core proof, i.e., a sequence of proof steps P that model
the properties of an ideal, and (iii) the target polynomial f .

The core of PAC uses two proof rules: ADD and MULT.
These rules model the addition and multiplication properties
of an ideal, e.g., in the ADD rule three polynomials p, q, r
are provided such that p + q = r, and p and q are either
contained in S or are derived in earlier proof steps. Thus we
have p, q ∈ 〈S〉, hence r ∈ 〈S〉. PAC proofs over Z[X] can be
checked by the proof checkers PACHECK and PASTÈQUE [14],
where the latter is verified in Isabelle/HOL but slower.

III. DUAL VARIABLES

The number of monomials in a polynomial has a huge
influence on the performance of polynomial operations such as
addition or multiplication. The encoding of [12] uses only the
expanded form of polynomials and the negation of an AIG node
is encoded using the polynomial representation of an inverter
1− li. Figure 1 shows the gate polynomials for the AIG nodes
l3, l4 and l5 with inputs l1 and l2. It can be seen that the size
of the gate constraint varies significantly, depending on the
signs of the children l1 and l2.

The purpose of dual variables is to provide a shorthand
notation for inverters. That is for each gate variable li we
introduce a further variable fi that encodes the negation of li.

Whenever variables v, w ∈ {0, 1} fulfill the relation w =
1−v, we call w the dual variable of v and write dual(v) = w.
We further call −w − v + 1 the dual constraint for v.

We integrate dual variables in the polynomial encoding of
the circuit as follows. For an internal gate variable li with
1 ≤ i ≤ k we introduce a dual variable dual(li) = fi. The
dual variables are used in the polynomial representation of
the AIG nodes to encode negation, e.g., we encode the gate
l5 = ¬l1 ∧ ¬l2 in Fig. 1 by the polynomial −l5 + f1f2.

Introducing separate variables for the negation of gate vari-
ables allows us to represent polynomials with fewer monomials
as can be seen in the following example.

Example 1. Let o = l0 ∨ l1 ∨ . . . ∨ ln−1, thus o is the output
of an n-ary OR gate. Since o = l0 ∨ l1 ∨ . . . ∨ ln−1 ⇔
¬o = ¬l0 ∧ ¬l1 ∧ . . . ∧ ¬ln−1, the polynomial representation



after flattening is 1 − o − (1 − l0)(1 − l1) · · · (1 − ln−1) and
contains 2n monomials. Introducing dual variables fi = 1− li
for 0 ≤ i < n allows us to represent the OR-gate using a
polynomial with only three monomials −o−f0f1 · · · fn−1+1.

We show in the following that adding dual variables to X and
adding the corresponding dual constraints to the polynomial
encoding of the circuit maintains the D-Gröbner basis.

Definition 1. Assume D(C) = {−fi− li+1 | li is an internal
AIG node of C, fi = dual(li)} ⊆ Z[X] and let GD(C) ⊆
Z[X] be the set of gate constraints that are generated using dual
variables. Further let JD(C) = 〈GD(C) ∪B(X) ∪D(C)〉 ⊆
Z[X]. The polynomials in GD(C) ∪ B(X) ∪D(C) ⊆ Z[X]
are ordered according to a RTTO, with fi > li for each gate
variable li, i.e., dual variables representing inverter gates.

Proposition 2. Let JD(C) ⊆ Z[X] be as in Def. 1. Then
GD(C) ∪B(X) ∪D(C) is a D-Gröbner basis for JD(C).

Proof. Since fi > li for every gate, the leading term of all
dual constraints is fi. Thus all leading terms of GD(C) ∪
B(X)∪D(C) are unique and consist only of a single variable,
and all leading coefficients are −1. The statement now follows
by the same arguments as in the proof of Thm. 5 in [12].

During verification we always reduce the specification L by
the dual constraint of a gate variable lj before reducing by its
gate constraint. This has the effect that all occurrences of fj
in the specification will be flipped to lj before reducing lj .

However, we need to address the duality of gate variables li
and fi in the tail of polynomials. A variable may occur as a
literal li and a dual literal fi within the same polynomial. The
reduction algorithm per se is not aware of the connection of li
and fi. It will treat both variables as separate instances. Thus
it may happen that a term in the resulting product contains a
variable li and its dual variable fi.

Proposition 3. For all Boolean variables li and their dual
representation dual(li) = fi with fi = 1− li we have lifi = 0.

Proof. Since li ∈ {0, 1}, we have l2i = li and thus −fi − li +
1 = −li · (−fi − li + 1) = fili.

Proposition 3 encodes that a Boolean variable can never be
zero and one at the same time. We include this property in the
verification process. Whenever two terms are multiplied and
the resulting term contains a variable and its dual counterpart,
the resulting term is set to zero.

Secondly, intermediate polynomials may contain monomials
with variable li as well as monomials with its dual fi. Our goal
is to merge some of these monomials, using li + fi = 1, an
immediate consequence of dual constraints. These monomials
are characterized by having an identical coefficient and the
same term except for the duality of a single variable.

Definition 2. Let m1,m2 be two monomials with m1 > m2.
We call m1 and m2 dual mergeable iff m1 = cfiτ and m2 =
cliτ for c a constant, τ a term, and some index i. We call the
monomial dmerge(m1,m2) = cτ their dual merge.

Algorithm 1: Merging monomials(p)
Input : Polynomial p
Output : Simplified polynomial r

1 q ← sort-degree-lex(p); r ← 0;
2 while q 6= 0 do
3 ql ← lm(q); t← tail(q); simplify← ⊥;
4 while t 6= 0 and deg(ql) = deg(lt(t)) and ¬ simplify do
5 qt ← lt(t);
6 if ql and qt are dual mergeable then
7 q ← q − ql − qt + dmerge(ql, qt);
8 simplify← >;

9 else
10 t← t− qt;

11 if ¬ simplify then
12 r ← r + ql;
13 q ← q − ql;

14 return sort-lex(r);

For example 2f1l2l3 and 2l1l2l3 are dual mergeable and we
have dmerge(2f1l2l3, 2l1l2l3) = 2l2l3.

One possible merging algorithm is depicted in Alg. 1. It
receives a polynomial p ∈ Z[X] as input and returns a
polynomial r, whose dual mergeable monomials have been
simplified by following a greedy strategy. In the first step
(line 1) we re-sort the given polynomial p according to a degree
lexicographic ordering.

Definition 3. A degree lexicographic ordering for terms σ1
and σ2 is defined as follows. If deg(σ1) < deg(σ2) then
σ1 < σ2 and if deg(σ1) = deg(σ2) then σ1 < σ2 iff σ1 is
smaller than σ2 in term lexicographic order.

Then (line 2), the algorithm repeatedly searches for potential
merges of the leading monomial ql by checking each tail
monomial qt in degree lexicographic order in turn to see if
ql and qt are dual mergeable. If such a qt is found (line 6),
then ql and qt are merged and the dual merge is inserted in the
appropriate place in the sorted order (line 7). The polynomial
q will have a new leading monomial since ql has been removed.
Even before all tail monomials have been exhausted, the search
can terminate early once deg(qt) < deg(ql) since no such
monomial can be merged with ql.

If on the other hand we did not find a dual mergeable
monomial for ql, we know that ql cannot be simplified, because
rewriting dual mergeable monomials only adds monomials with
a degree smaller than deg(ql). Thus it is not possible that we
generate a monomial in a later iteration that would be a dual
mergeable counterpart for ql. Hence ql will be in the simplified
polynomial r and can be excluded from our search space q.

Example 4. We apply Alg. 1 on p = l1f2f3+l1f2l3+l1l2f3+
f1f2 + l2 ∈ Z[l1, l2, l3, f1, f2, f3]. We write qi to denote the
polynomial q after iteration i and indicate the dual merges.

q0 = l1f2f3 + l1f2l3 + l1l2f3 + f1f2 + l2 r = 0
q1 = l1l2f3 + f1f2 + l1f2 + l2 r = 0
q2 = f1f2 + l1f2 + l2 r = l1l2f3
q3 = f2 + l2 r = l1l2f3
q4 = 1 r = l1l2f3
q5 = 0 r = l1l2f3 + 1



IV. TAIL SUBSTITUTION

In GP adders all carries are computed in parallel to avoid a
delay until the correct carry propagates. Although the parallel
structures rely on the same input signals of the adder, the
computation of the carries rarely shares internal nodes. This
has the effect that cancellations in the intermediate reduction
results are delayed until the reduction has reached the inputs
of the GP adder. Even if two internal gates are equivalent we
do not detect this commonality in the reduction until we have
reached the adder inputs.

Example 5. Consider p = f − g and p1, . . . p6 in Z[X]:

p1 := −f + h1h2, p2 := −g + h3h4g0g5,
p3 := −h1 + g0g1g2, p4 := −h3 + g1g2,
p5 := −h2 + g3g4g5, p6 := −h4 + g3g4

We have to reduce p by polynomials p1, . . . , p6 to obtain p = 0.

We present now a tail substitution approach, which allows us
to share nodes on a higher topological level. In our approach
we identify whether the tail of a polynomial is a subterm in
the tail of a topologically larger polynomial. If so, we replace
the tail of the smaller polynomial by the leading monomial of
the gate constraint in the larger polynomial.

Example 6. Let p1, . . . p6 be as in Ex. 5. We see that tail(p4) |
tail(p3) and tail(p6) | tail(p5) and thus are able to derive:

p3 := −h1 + h3g0, p5 := −h2 + h4g5
In a second iteration we substitute the tails of p3, p5 in p2:

p1 := −f + h1h2, p2 := −g + h1h2
Hence we have to reduce p only by p1 and p2 to derive p = 0.

In the following theorem we show that tail substitution in
the ideal generators does not affect the ideal.

Theorem 7. Let P = {p1, p2, . . . , pm} ⊆ Z[X] and I = 〈P 〉.
Further let pi = lm(pi)+tail(pi), pj = lm(pj)+q tail(pi) ∈ P
for some q ∈ Z[X]. Assume that h = lm(pj)− q lm(pi) and
J = 〈P \ {pj} ∪ {h}〉. Then I = J .

Proof. The set of ideal generators for I and J is equal up
to pj and h. Per definition pj ∈ I and h ∈ J . To show
that both ideals are equal we have to show that h ∈ I and
pj ∈ J . First we show that h ∈ I: We know pi, pj ∈ I .
Thus by the definition of an ideal also (−q)pi ∈ I and hence
(−q)pi + pj = lm(pj)− q lm(pi) = h ∈ I .

Second, we show that pj ∈ J : Per definition pi, h ∈ J and
thus qpi + h = lm(pj) + q tail(pi) = pj ∈ J .

Theorem 7 shows that whenever the tail of a polynomial pj
is a multiple of the tail of a polynomial pi we are allowed to
substitute the tail of a polynomial by its leading monomial,
without affecting the generated ideal. Furthermore, it gives us
a recipe for deriving the rewritten polynomial h.

Theorem 8. Let P = {p1, p2, . . . , pm} ⊆ Z[X] be a D-
Gröbner basis of I = 〈P 〉. Let pi, pj ∈ P with lt(pj) > lt(pi)
and tail(pi) | tail(pj). Assume that h = lm(pj) − q lm(pi).
Then P \ {pj} ∪ {h} is a D-Gröbner basis of I .

Algorithm 2: Carry-Rewriting in TELUMA
Input : Circuit C in AIG format with marked FSA gates
Output : Carry-rewritten Gröbner basis of C

1 F ← Mark-final-stage-adder(C);
2 G← Dual-Polynomial-Encoding(F );
3 H ← Polynomial-Encoding(C \ F );
4 G← Eliminate-Pure-Positive-Variables(G);
5 G← Tail-Substitution(G);
6 G← Carry-Unfolding(G);
7 return G ∪H

Proof. Since lt(pj) > lt(pi) we have lm(h) = lm(pj). Thus
by definition P \{pj}∪{h} is a D-Gröbner basis of I [2].

We apply tail substitution steps in GD(C) ∪B(X) ∪D(C)
according to the assumptions of Thm. 8 to maintain its D-
Gröbner basis property. Due to the usage of dual variables
the tails of pi and pj in GD(C)∪B(X)∪D(C) only consist
of a single monomial with coefficient 1 and all exponents 1.
Thus to check whether tail(pi) | tail(pj), we simply validate
whether all variables of tail(pi) occur in tail(pj).

V. CARRY REWRITING

In this section we present how we use dual variables
and tail substitution to rewrite and simplify the encoding
of complex GP adders. In a typical GP adder with inputs
cin, x0, . . . , xm, y0, . . . , ym and outputs s′0, . . . , s

′
m, cm+1, the

outputs s′i are calculated as s′i = pi ⊕ ci with pi = xi ⊕ yi.
The carries ci are recursively generated as ci+1 = gi∨ (ci∧pi)
where gi = xi ∧ yi. The precise computation of the carries ci
(recursively, unrolled or mixed) depends on the circuit archi-
tecture. For example, in a pure carry look-ahead adder, the
calculation of the carries is completely unrolled:

c0 = cin
c1 = g0 ∨ (c0 ∧ p0)
c2 = g1 ∨ (g0 ∧ p1) ∨ (c0 ∧ p0 ∧ p1)

Our goal is to rewrite the carries and restore the recursion of
ci; i.e., express the carries ci in terms of the previous carry ci−1
and the generate and propagate bits gi−1, pi−1. Therefore, the
carry look-ahead unit is rewritten into a ripple-carry unit, which
can easily be verified using computer algebra.

We use our tool AMULET 2.0 [11] as a basis for our
implementation. AMULET 2.0 is able to detect complex final
stage (FS) adders and identifies their components. In the
approach of [11], complex FS adders are replaced by the
AIG encoding of simple RC adders. We integrate our novel
carry rewriting algorithm that uses dual variables and tail
substitutions into AMULET 2.0 and yield the tool TELUMA.
The outline of carry rewriting can be seen in Alg. 2.

In a first step (line 1), we use the functionality of
AMULET 2.0 to identify and mark the components of the
FS adders. Secondly, we generate the gate constraints for the
AIG nodes (line 2). For all nodes that are marked as belonging
to the FS adder, we apply the encoding including dual variables.
This has the effect that the tail of all gate constraints of the
FS adder consists only of a single monomial. All other nodes
are encoded using positive variables only (line 3).



The preprocessing and rewriting steps (line 4–6) are only
executed for nodes of the FS adder. After each polynomial
operation we apply Alg. 1. In the first preprocessing step
(line 4) all variables that occur only positively are substituted.
Since the tails of all polynomials consist of single monomials,
and we replace only positive variables by their tail, all tails of
rewritten polynomials will remain single monomials.

We apply tail substitution as proposed in Sect. IV. In the
data structure of AMULET 2.0 all terms are internally shared
using reference counters. If we encounter a tail term that
occurs more than once, we check the parent nodes of the first
variable to identify nodes that use the same tail.

We notice that after applying tail substitution the tails of the
adder carries contain only dual variables.

Example 9. The following polynomials are an excerpt of a
carry-lookahead adder after tail substitution, with xi, yi being
the i-th inputs of the adder, ci+1, ci denoting carries and pi
being the polynomial encoding of xi ⊕ yi:
−ci+1 + f4f5f6f7, −l7 + xiyi, −l6 + pil3,
−l5 + pil2, −l4 + pil1, −ci + f1f2f3

Proposition 10. Let −li + στi for 1 ≤ i ≤ k be a given
set of polynomials, with li ∈ X and σ, τi ∈ [X]. Assume
∀ki=0fi = dual(li). Then

∏k
i=0 fi = 1− σ(1−

∏k
i=0(1− τi)).

Proof. We have
∏k

i=0 fi =
∏k

i=0(1− li) =
∏k

i=0(1− στi) =∏k
i=0(1− σ + σ − στi) =

∏k
i=0((1− σ) + σ(1− τi)).

The term σ consists only of Boolean variables, thus σ2 =
σ, (1 − σ)2 = 1 − σ, and (1 − σ)σ = 0. Hence the product
calculates to

∏k
i=0((1−σ)+σ(1−τi)) = (1−σ)+σ

∏k
i=0(1−

τi) =
∏k

i=0 fi = 1− σ(1−
∏k

i=0(1− τi)).

We use Prop. 10 to unfold all carries (line 6), starting with
the most significant carry. At a first glance the right side of the
simplification proposed in Prop. 10 seems to be more complex
than

∏k
i=0 fi. However, in practice the term τi is almost

always a single variable. Thus, (1 − τi) can be expressed
using dual(τi). Applying tail substitution, we are typically
able to replace

∏k
i=0 dual(τi) by a single gate variable—e.g.,

in Ex. 9 we have that f1f2f3 = ci. We derive −ci+1+f7pici−
f7p1 + f7, with gi = l7 which is the desired expression.

If not all τi are single variables, e.g., in Brent-Kunge adders,
we repeat Prop. 10 and tail substitution on those polynomials
1− τi that share a variable until we have unfolded all τi.

It may happen in the first iteration from the most significant
carry to the least significant carry that the tail substitution is
not successful, as the smaller carries are not yet rewritten and
we cannot detect shared equalities. We keep those carries for
which rewriting fails on a stack. In subsequent iterations we
apply carry rewriting from the least significant carry on the
stack to the most significant carry until completion.

After rewriting all carries of the FS adder, our proposed
preprocessing technique is finished and returns the rewritten
polynomial encoding of the FS adder together with the poly-
nomial encoding of the remaining parts of the multiplier. The
specification L is reduced by these polynomials using the
verification method of AMULET 2.0 [11].

100 101 102

CPU time, time limit = 300sec

0

25

50

75

100

125

150

175

200

N
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

TeluMA

AMulet2[11]

RevSCA-2.0[16]

DyPoSub[17]

ABC-based[5]

Figure 2: Verification time of 192 unsigned multipliers

VI. PROOF GENERATION

AMULET 2.0 generates certificates in PAC. In the following
we describe how we generate proof steps for our new carry
rewriting technique. First, we include dual variables in PAC
by adding the set of dual constraints D(C) to the constraint
set of the proof. That is, the constraint set of polynomials is
S = GD(C) ∪D(C). B(X) is treated implicitly in PAC.

In the core proof we have to include steps that model Prop. 3.
That is, whenever polynomials are multiplied we generate
a multiplication step where the resulting polynomial is not
reduced and may contain monomials of the form cfiliτ for
c ∈ Z, fi, li ∈ X , and τ ∈ [X]. We generate a multiplication
step that calculates (cliτ)(−fi − li + 1) = −cfiliτ . Using an
addition step yields the cancellation of −cfiliτ . We proceed
in a similar fashion for the simplifications executed by Alg. 1.
We multiply the dual constraint of the variable v by ql and add
the resulting polynomial to p to yield the desired reduction.

Tail substitution as described in Thm. 7 can be monitored
using a multiplication step for calculating −qpi, which is then
added to pj to derive the desired polynomial h.

To unfold carries as in Prop. 10 we have to monitor the
rewriting of the product of dual variables. That is we first
flip the dual variables using dual constraints. Second, we
substitute leading terms of gate constraints li by their tails.
Since PAC proofs consider only polynomials in expanded form,
the product is expanded. The reductions of exponents in σ is
implicit during product expansion. The tail substitution of the
(unfolded) τi is monitored as described above.

VII. EVALUATION

Our experiments on an Intel Xeon E5-2620 v4 CPU running
at 2.10 GHz (with turbo-mode disabled) use a memory limit of
128 GB. The time is listed in seconds (wall-clock time). We
evaluate our approach on the aoki-benchmark set [9], which
contains 192 64-bit unsigned multipliers. The time limit is
set to 300 seconds. Full experimental results including source
code are available at http://fmv.jku.at/teluma.

http://fmv.jku.at/teluma


Table I: Proof Generation and Checking

architecture n
[12] [13] Our approach

DRUP PAC total (s) PAC PAC
gen (s) check (s) # rules gen (s) check (s) # rules gen (s) check (s) total (s) # rules gen (s) check (s) total (s) # rules

sp-ar-cl 32 0 0 14 927 0 1 33 834 1 133 31 164 1 597 897 0 0 0 60 336
sp-bd-ks 32 0 0 17 528 0 1 34 958 1 20 8 28 817 956 0 0 0 54 116
sp-dt-lf 32 0 0 3 138 0 1 33 451 1 2 3 5 321 720 0 0 0 47 835
bp-ct-bk 32 0 0 2 276 0 1 27 312 1 1 2 3 217 128 0 0 0 36 356
bp-wt-cl 32 1 1 46 502 0 1 30 561 2 3 133 242 3 375 5 536 176 1 1 2 114 665
sp-ar-cl 64 2 1 65 317 2 3 139 338 8 TO - - - 1 3 4 289 632
sp-bd-ks 64 1 0 44 921 2 3 142 138 6 56 18 74 1 440 943 1 2 3 214 378
sp-dt-lf 64 0 0 28 772 2 3 138 539 6 10 10 19 816 572 1 1 2 192 805
bp-ct-bk 64 0 0 19 891 2 3 105 579 5 8 7 15 459 262 1 1 2 136 703
bp-wt-cl 64 8 6 42 199 2 3 118 573 19 TO - - - 7 17 24 774 044

PPG: simple (sp), Booth (bp) PPA: array (ar), Balanced delay tree (bd), Dadda tree (dt), compressor tree (ct), Wallace tree (wt) TO = 3600 sec
FSA: carry look-ahead (cl), Kogge-Stone (ks), Ladner-Fischer (lf), Brent-Kung (bk) Benchmarks are generated by the Arithmetic Model Generator [9].

First we evaluate the time our new tool TELUMA (cf.
Sect. V) needs to verify the benchmarks and compare to
recently developed tools AMULET 2.0 [11], RevSCA-2.0 [16],
and DYPOSUB [17] as well as to the ABC-based work of [5].
Results in Fig. 2 show that AMULET 2.0 and TELUMA
are both able to verify the complete benchmark set. The
ABC-based approach produces a segmentation fault for all
benchmarks. TELUMA provides a significant speedup for those
benchmarks where AMULET 2.0 uses more than one second.
These are all multipliers where the FS adder is a GP adder.

In our second experiment, we evaluate the proof generation
of TELUMA on the same instances as used in [13], with results
in Tbl. I. In the first block we show the proof generation
(“gen”) and checking time (“chk”) in seconds of DRUP and
PAC proofs using the toolflow of AMULET 2.0 [11] and
provide the number of generated proof rules in DRUP as well
as PAC. The second block shows the approach of [13] where
the DRUP and PAC proofs of the first block are merged to yield
a single PAC proof. The third block shows the PAC proofs
directly generated by TELUMA. It can be seen that the unified
PAC proofs of [13] are between 3 and 48 times larger than
the proofs generated by TELUMA, which is also noticeable in
the time needed for generating and checking the proofs e.g.,
the proof generation time for 32-bit bp-wt-cl multipliers takes
around an hour, whereas our approach is able to generate a
single PAC certificate in less than a second.

VIII. CONCLUSION

In this paper we presented how to include dual variables that
represent negative literals in the polynomial encoding of gate-
level circuits. We introduced a novel tail substitution scheme
and discussed a carry rewriting technique that simplifies com-
plex final stage adders. The combination of these methods
allowed us to verify complex multiplier circuits up to an order
of magnitude faster than existing techniques. Furthermore, we
were able to provide a uniform PAC proof certificate without
causing any extra overhead of simulation.

In future work, we want to apply our general techniques of
dual variables and tail substitution to more general circuit verifi-
cation. A further goal is to determine a minimal representation
of pseudo-Boolean polynomials using dual variables.

REFERENCES

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson.
Space complexity in propositional calculus. SIAM J. Comput.,
31(4):1184–1211, 2002.

[2] T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases. Springer,
1993.

[3] A. Biere. Collection of combinational arithmetic miters submitted to the
SAT Competition 2016. In SAT Competition 2016, volume B-2016-1 of
Dep. of CS Series of Pub. B, pages 65–66. Univ. Helsinki, 2016.

[4] R. E. Bryant and Y. Chen. Verification of arithmetic circuits using
binary moment diagrams. STTT, 3(2):137–155, 2001.

[5] M. J. Ciesielski, T. Su, A. Yasin, and C. Yu. Understanding algebraic
rewriting for arithmetic circuit verification: a bit-flow model. IEEE
TCAD, pages 1–1, 2019.

[6] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms.
Springer-Verlag New York, 1997.

[7] S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov. The power
of negative reasoning. In CCC, volume 200 of LIPIcs, pages 40:1–40:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[8] M. J. H. Heule and A. Biere. Proofs for satisfiability problems. In All
about Proofs, Proofs for All, volume 55, pages 1–22, 2015.

[9] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal design of
arithmetic circuits based on arithmetic description language. IEICE
Transactions, 89-A(12):3500–3509, 2006.

[10] D. Kaufmann. Formal Verification of Multiplier Circuits using Computer
Algebra. PhD thesis, Informatik, Johannes Kepler University Linz, 2020.

[11] D. Kaufmann and A. Biere. Amulet 2.0 for verifying multiplier circuits.
In TACAS (2), volume 12652 of LNCS, pages 357–364. Springer, 2021.

[12] D. Kaufmann, A. Biere, and M. Kauers. Verifying large multipliers by
combining SAT and computer algebra. In FMCAD 2019, pages 28–36.
IEEE, 2019.

[13] D. Kaufmann, A. Biere, and M. Kauers. From DRUP to PAC and back.
In DATE 2020, pages 654–657. IEEE, 2020.

[14] D. Kaufmann, M. Fleury, and A. Biere. Pacheck and Pastèque, Checking
Practical Algebraic Calculus Proofs. In FMCAD 2020, volume 1 of
FMCAD, pages 264–269. TU Vienna Academic Press, 2020.

[15] J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits. IEEE TCAD,
32(9):1409–1420, 2013.

[16] A. Mahzoon, D. Große, and R. Drechsler. RevSCA: Using reverse
engineering to bring light into backward rewriting for big and dirty
multipliers. In DAC, pages 185:1–185:6. ACM, 2019.

[17] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler. Towards formal
verification of optimized and industrial multipliers. In DATE 2020, pages
544–549. IEEE, 2020.

[18] B. Parhami. Computer Arithmetic - Algorithms and Hardware designs.
Oxford University Press, 2000.

[19] A. A. R. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler.
Equivalence checking using gröbner bases. In FMCAD 2016, pages
169–176. IEEE, 2016.

[20] M. Temel, A. Slobodová, and W. A. Hunt. Automated and scalable
verification of integer multipliers. In CAV (1), volume 12224 of LNCS,
pages 485–507. Springer, 2020.


	Introduction
	Preliminaries
	Dual Variables
	Tail substitution
	Carry Rewriting
	Proof generation
	Evaluation
	Conclusion
	References

