
Influence of the Reduction Order in
Multiplier Verification using Computer Algebra

Daniela Kaufmann
Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

daniela.kaufmann@jku.at

Abstract—Currently the most promising approach for auto-
matically verifying multiplier circuits relies on computer algebra.
In this approach the circuit as well as its specification are
modeled as polynomials and a polynomial reduction algorithm
is applied to show correctness. We want to elaborate on the
influence of the reduction order by employing a wide range of
valid orderings. In our experiments we measure and compare
the size of the intermediate reduction results and gain a clear
preference towards a column-wise ordering.

I. INTRODUCTION & PRELIMINARIES

The state of the art approach for fully automated verification
of gate-level multipliers, calculating S = A · B, is based on
polynomial reasoning [1], [3], [4], [5], [6], [7].

In this method each logical gate of the circuit is represented
by a polynomial, describing the relation of the output and
inputs of the gate. Additionally the specification of the multi-
plier is modeled as a polynomial. Correctness of the circuit
is shown by reducing the specification polynomial by the
gate polynomials, using polynomial division, until no further
reduction is possible. The multiplier is correct if and only if
the reduction returns zero. More details on the polynomial
encoding are given, for instance, in [4].

The main issue of the algebraic approach is that without pre-
processing the size (number of monomials) of the intermediate
reduction results increases drastically, leading to a slow-down
in the verification time. This was for instance analyzed in [5].

In order to overcome the issue of the monomial blow-up
related works propose various heuristics which rewrite the
polynomial representation of the circuit before reduction is
applied [1], [3], [4], [6]. Although using different approaches,
a commonality is to explicitly or implicitly detect full- and
half-adders in the circuit. The polynomials of the internal
adder gates are eliminated and only polynomials which define
the relation between the outputs and inputs of an adder remain.
This allows cancellation of common non-linear monomials.

After preprocessing the specification polynomial is reduced
by the rewritten gate polynomials. The choice of the reduction
order does not influence the correctness of the algorithm.
However it is conjectured that it has great impact on the size
of the intermediate reduction results. The authors of [7] show
an experiment, where two reduction orderings for simple mul-
tiplier architectures are compared. However in this experiment
no preprocessing is applied.

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE),
P31571-N32, SFB F5004, LIT AI Lab funded by the state of Upper Austria.

1211109

8765

4321

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p02p11p20p12p21p30p22p31

p03p13p23p32

p33

(a) Row-wise Order

121196

10853

7421

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p02p11p20p12p21p30p22p31

p03p13p23p32

p33

(b) Column-wise Order
Fig. 1. Different orders of full- and half-adders, with pij = aibj .

In this work we elaborate on the impact of the reduction
order after preprocessing, in particular after rewriting full-
and half-adders in the circuit. In our experiments we select
a simple and a complex multiplier architecture and choose
different (arbitrary) reduction orderings and measure the size
of the intermediate reduction results.

II. REDUCTION ORDER

Gates in acyclic circuits, such as multiplier circuits, can
be ordered according to their reverse topological level. The
reduction order of the corresponding gate polynomials should
follow such a reverse topological ordering. This ensures that
after a gate polynomial is used for reduction it never has to
be considered again [7].

Given the shape of multipliers, two orderings seem natural,
namely a column-wise and a row-wise ordering. Both order-
ings are depicted in Fig. 1 for a simple 4-bit carry-save-adder
multiplier. The multipliers in Fig. 1 have been preprocessed,
such that only full- and half-adders remain as boxes.

The idea of the row-wise order, cf. Fig. 1a, is to order the
gates according to their backward level seen from the circuit
inputs. The approaches of [1], [6], [7] use such an ordering.

In the column-wise order, cf. Fig. 1b, the multiplier is sliced
vertically, such that each slice contains one output bit. The
gates in the slices are ordered according to their topological
level seen from the output bit. In our work [3], [4] we use
a column-wise ordering, which allowed us to introduce an
incremental checking method in [4]. In this approach the
correctness of the circuit is shown by incrementally verifying
each slice. The main advantage is that we always use only one
small part of the global specification for reduction. However
the column-wise reduction order remains the same.

The reduction orderings are not limited to these two corner
cases, circuits support various arbitrary reverse topological
orderings, e.g. in Fig. 1a the ordering 1 > 2 > 5 > 3 > 4 >
6 > 7 > 9 > 8 > 11 > 10 > 12 is also reverse topological.

daniela.kaufmann@jku.at


Fig. 2. Effect of reduction order on sp-ar-rc benchmarks

III. EXPERIMENTS

In our experiments we compare row-wise and column-
wise reduction orders to arbitrary reverse topological reduction
orders. We select two different multipliers of the AOKI
benchmarks [2] for our experimental evaluation. We perform
preprocessing, as in [3], and measure the size and time of
the final reduction process. All our experiments are run on a
standard Ubuntu 16.04 Desktop machine with Intel i7-2600
3.40GHz CPU and 16 GB of main memory. Our experimental
data is available at http://fmv.jku.at/redorder.

In our first experiment we select a simple 32-bit “sp-ar-rc”
multiplier. The 4-bit version of this architecture is depicted
in Fig. 1. The results can be seen in Fig. 2. The left side
of Fig. 2 shows the time (in seconds) needed to verify the
multiplier and the maximum size (number of monomials)
of the intermediate reduction results of a row-wise (blue)
and column-wise (orange) order and 500 arbitrary reverse
topological orderings (green). Additionally we list the size and
time of our incremental column-wise (red) approach.

It can be seen that the non-incremental approaches are in
the same order of magnitude, i.e., the sizes span a range
of around 30 monomials. However the incremental column-
wise approach produces by far the smallest and fastest result,
because it never considers the complete global specification.
The right side of Fig. 2 shows the development of the size
of the intermediate results for a complete reduction run. We
only show the results of one of the 500 arbitrary orderings.
Again the non-incremental orders behave similarly, but are
out-rivaled by the incremental column-wise approach.

In our second experiment we consider a more complex
32-bit multiplier “bp-wt-rc”, which uses Booth-encoding for
generating the partial products and where the full- and half-
adders are arranged in a Wallace-tree structure. Wallace-tree
multipliers are faster than simple carry-save-adder multipliers,
but the arrangement of the full- and half-adders is more
involved. The results of this experiment can be seen in Fig. 3,
where we use the same color-scheme as in Fig. 2.

In contrast to the “sp-ar-rc” multiplier, there is a gap of
around 300 monomials between the column-wise and row-
wise ordering. The sizes of the arbitrary reverse topological
orderings are in between. Only the column-wise order has a
linearly decreasing trend during reduction. Again our incre-
mental approach outperforms the non-incremental approaches.

Interestingly in both experiments the row-wise ordering
caused the biggest intermediate results.

Fig. 3. Effect of reduction order on bp-wt-rc benchmarks

IV. CONCLUSION & FUTURE WORK

In this work we investigated the effect of the reduction order
after preprocessing. We compared the sizes of the intermediate
reduction results as well as the reduction time for column-
wise, row-wise or arbitrary reverse topological orderings.

Our experiments show that the effect of reduction order
highly depends on the circuit architecture. For simple archi-
tectures there is almost no difference between the various non-
incremental orderings. On the other hand the reduction order
has a tremendous impact for complex multipliers. Interestingly
in both experiments the column-wise ordering was very stable,
and especially for complex multipliers, there is a clear trend
to select a column-wise ordering for polynomial reduction.

However all non-incremental approaches are outperformed
by our incremental column-wise approach [4]. Thus these
experiments further support our observation, that an incremen-
tal approach, where the specification is divided into multiple
polynomials helps to speed up computation.

In the future we want to further investigate the influence of
the reduction order. We want to be able to understand what
causes the differences in the intermediate reduction results,
as this may help to successfully apply multiplier verification
to synthesized multipliers. The structure of such multipliers
is highly optimized, having the effect that the full- and half-
adders cannot be extracted. This issue leads to a blow-up in
the size of the reduction results. Thus synthesized multipliers
still impose a big challenge for automated verification.

We would like to thank Alan Mishchenko for bringing up
and discussing this interesting research question.

REFERENCES

[1] M. Ciesielski, T. Su, A. Yasin, and C. Yu. Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model. IEEE
TCAD, 2019.

[2] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal Design of
Arithmetic Circuits Based on Arithmetic Description Language. IEICE
Transactions, 89-A(12):3500–3509, 2006.

[3] D. Kaufmann, A. Biere, and M. Kauers. Verifying Large Multipliers by
Combining SAT and Computer Algebra. To appear in FMCAD’19.

[4] D. Kaufmann, A. Biere, and M. Kauers. Incremental Column-wise
verification of arithmetic circuits using computer algebra. FMSD, 2019.

[5] A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: clean your
polynomials before backward rewriting to verify million-gate multipliers.
In ICCAD, page 129. ACM, 2018.

[6] A. Mahzoon, D. Große, and R. Drechsler. RevSCA: Using Reverse
Engineering to Bring Light into Backward Rewriting for Big and Dirty
Multipliers. In DAC, pages 185:1–185:6. ACM, 2019.

[7] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski. Formal
Verification of Arithmetic Circuits by Function Extraction. IEEE TCAD,
35(12):2131–2142, 2016.

http://fmv.jku.at/redorder

