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Motivation & Solving Techniques

Given: Gate-level multiplier for fixed bit-width n.

Question: For all possible ai, bi ∈ B :

(2a1 + a0) ∗ (2b1 + b0) = 8s3 + 4s2 + 2s1 + s0?

Solving Techniques

� SAT using CNF encoding

� Binary Moment Diagrams (BMD)

� Algebraic reasoning

a1b1 a0b1 a1b0 a0b0

g1 g2 g3

g4

s0s1s2s3
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Basic Idea of Algebraic Approach

Multiplier
a1 b1 a0 b1 a1 b0 a0 b0

g1 g2 g3

g4

s0s1s2s3

Polynomials

B = {
x− a0 ∗ b0,
y − a1 ∗ b1,
s0 − x ∗ y,
. . .

}

Ideal Membership Test
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Polynomials

p = c1τ1 + . . .+ cmτm ∈ Q[X] = Q[x1, . . . , xn]

� Q[X] is the ring of polynomials with variables X = x1, . . . , xn and coefficients in Q.

� A term τi is a product xe11 · · ·xenn with ej ≥ 0.

� A monomial ciτi is a constant multiple of a term with ci ∈ Q.

� A polynomial p is a finite sum of monomials.



Polynomials

p = c1τ1 + . . .+ cmτm ∈ Q[X] = Q[x1, . . . , xn]

� We fix a term order such that for all terms τ, σ1, σ2 we have
x01 · · ·x0n = 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2.

� An order is a lexicographic term order if for all σ1 = xu1
1 · · ·xun

n , σ2 = xv11 · · ·xvn
n we

have σ1 < σ2 iff there exists an index i with uj = vj for all j < i, and ui < vi.

� lm(p) = c1τ1 is the leading monomial of p.

� lt(p) = τ1 is the leading term of p.

� p− lm(p) is the tail of p.



Ideals

Ideal. A nonempty subset I ⊆ Q[X] is called an ideal if

∀ p, q ∈ I : p+ q ∈ I and ∀ p ∈ Q[X] ∀ q ∈ I : pq ∈ I

Basis. A set P = {p1, . . . , pm} ⊆ Q[X] is called a basis of an ideal I if

I = {q1p1 + · · ·+ qmpm | q1, . . . , qm ∈ Q[X]} = 〈P 〉

I is the set of polynomials which become zero, when the elements of P become zero.



Circuit Polynomials

Gate polynomials.

s3 = g1 ∧ g4 −s3 + g1g4,

s2 = g1 ⊕ g4 −s2 + g1 + g4 − 2g1g4,

g4 = g2 ∧ g3 −g4 + g2g3,

s1 = g2 ⊕ g3 −s1 + g2 + g3 − 2g2g3,

g1 = a1 ∧ b1 −g1 + a1b1,

g2 = a0 ∧ b1 −g2 + a0b1,

g3 = a1 ∧ b0 −g3 + a1b0,

s0 = a0 ∧ b0 −s0 + a0b0

Input Field polynomials.

a1, a0 ∈ B a1(1− a1), a0(1− a0),

b1, b0 ∈ B b1(1− b1), b0(1− b0)

a1b1 a0b1 a1b0 a0b0

g1 g2 g3

g4

s0s1s2s3



Ideals associated to Circuits
Polynomial Circuit Constraints (PCCs).
A polynomial p ∈ Q[X] such that for all

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and resulting values g1, . . . , gk, s0, . . . , s2n−1 im-
plied by the gates of the circuit C the substitution
of these values into p gives zero.

� The set of all PCCs is denoted by I(C).

� I(C) contains all relations of the circuit.

� I(C) is an ideal.

a1b1 a0b1 a1b0 a0b0

g1 g2 g3

g4

s0s1s2s3



Ideals associated to Circuits
Examples for PCCs:

� s0 − a0b0 and gate

� a21 − a1 a1 boolean

� g22 − g2 g2 boolean

� s1g4 xor-and constraint

� . . .

Multiplier. A circuit C is called a multiplier if

2n−1∑
i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑
i=0

2ibi

)
∈ I(C).

a1b1 a0b1 a1b0 a0b0

g1 g2 g3

g4
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Ideal Membership Test

Ideal membership problem. Given a polynomial f ∈ Q[X] and an ideal
I = 〈g1, . . . , gm〉 = 〈G〉 ⊆ Q[X], determine if f ∈ I.

Given arbitrary basis G of I it is not obvious how to solve ideal membership problem.

Lemma (Ideal membership test)

Let G = {g1, . . . , gm} ⊆ Q[X] be a Gröbner basis, and let f ∈ Q[X]. Then f is contained
in the ideal I = 〈G〉 iff the unique remainder of f with respect to G is zero.



Gröbner basis

� Every ideal I ⊆ Q[X] has a Gröbner basis w.r.t. a fixed term order.

� Construction algorithm by Buchberger which given an arbitrary basis of an ideal I
computes a Gröbner basis of it (doubly exponential)

� Algorithm is based on repeated reduction of so-called S-polynomials (spol).

� A basis G is a Gröbner basis of I = 〈G〉 if for all p, q ∈ G : spol(p, q) reduces to zero.

� Product criterion. If p, q ∈ Q[X] \ {0} are such that the leading terms are coprime,
i.e., lcm(lt(p), lt(q)) = lt(p) lt(q), then spol(p, q) reduces to zero.



Circuit Gröbner basis

We can deduce at least some elements of I(C):

� G = Gate Polynomials + Input Field Polynomials

� Let J(C) = 〈G〉.
� Lexicographic term order: output variable of a gate is greater than input variables

Theorem
G is a Gröbner basis for J(C).

Proof idea: Application of Buchberger’s Product criterion.



Circuit Polynomials

Gate polynomials.

s3 = g1 ∧ g4 −s3 + g1g4,

s2 = g1 ⊕ g4 −s2 − 2g1g4 + g4 + g1,

g4 = g2 ∧ g3 −g4 + g2g3,

s1 = g2 ⊕ g3 −s1 − 2g2g3 + g2 + g3,

g1 = a1 ∧ b1 −g1 + a1b1,

g2 = a0 ∧ b1 −g2 + a0b1,

g3 = a1 ∧ b0 −g3 + a1b0,

s0 = a0 ∧ b0 −s0 + a0b0

Input Field polynomials.

a1, a0 ∈ B −a2
1 + a1, −a2

0 + a0,

b1, b0 ∈ B −b21 + b1, −b20 + b0

a1b1 a0b1 a1b0 a0b0

g1 g2 g3

g4

s0s1s2s3



Soundness and completeness

Theorem (Soundness and completeness)

For all acyclic circuits C, we have J(C) = I(C).

� J(C) ⊂ I(C): soundness

� I(C) ⊂ J(C): completeness



Non-Incremental Checking Algorithm

Non-Incremental Checking Algorithm.

Divide polynomial
2n−1∑
i=0

2isi −
(n−1∑
i=0

2iai
)(n−1∑

i=0

2ibi
)

by elements of G until no further

reduction is possible, then C is a multiplier iff remainder is zero.

Implications:

� Leading term is one variable, division is actually substitution by tail.

� Leading coefficient ±1 of all gate polynomials, computation stays in Z.

� Still can use rational coefficients Q (important for Singular).

� Completeness proof allows to derive input assignment if C is incorrect.



Example: 2 Bit - Binary Multiplication

G = {
−s3 + g1g4,

−s2 + g1 + g4 − 2g1g4,

−g4 + g2g3,

−s1 + g2 + g3 − 2g2g3,

−g1 + a1b1,

−g2 + a0b1,

−g3 + a1b0,

−s0 + a0b0,

−a21 + a1,

−a20 + a0,

−b21 + b1,

−b20 + b0}

8s3 + 4s2 + 2s1 + s0 − 4a1b1 − 2a1b0 − 2a0b1 − a0b0
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Example: 2 Bit - Binary Multiplication

G = {
−s3 + g1g4,

−s2 + g1 + g4 − 2g1g4,

−g4 + g2g3,

−s1 + g2 + g3 − 2g2g3,

−g1 + a1b1,

−g2 + a0b1,

−g3 + a1b0,

−s0 + a0b0,

−a21 + a1,

−a20 + a0,

−b21 + b1,

−b20 + b0}
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8g1g4 + 4(g1 + g4 − 2g1g4) + 2s1 + s0
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Example: 2 Bit - Binary Multiplication

G = {
−s3 + g1g4,

−s2 + g1 + g4 − 2g1g4,

−g4 + g2g3,

−s1 + g2 + g3 − 2g2g3,

−g1 + a1b1,

−g2 + a0b1,

−g3 + a1b0,

−s0 + a0b0,

−a21 + a1,

−a20 + a0,

−b21 + b1,

−b20 + b0}

8s3 + 4s2 + 2s1 + s0 − 4a1b1 − 2a1b0 − 2a0b1 − a0b0
8g1g4 + 4s2 + 2s1 + s0 − 4a1b1 − 2a1b0 − 2a0b1 − a0b0

8g1g4 + 4(g1 + g4 − 2g1g4) + 2s1 + s0

−4a1b1 − 2a1b0 − 2a0b1 − a0b0
...

0



Computation Issues

Generally the number of monomials in the intermediate results increases drastically:

� 8-bit multiplier can not be verified within 20 minutes.

Tailored heuristics become very important:

� Choose appropriate term order.

� Divide verification problem into smaller sub-problems.

� Rewrite and thus simplify Gröbner basis G.



Order

Row-Wise

a0 ·B

a1 ·B

a2 ·B

987

654

321

32s5 16s4 8s3 4s2 2s1 1s0+++++

0

0

0 00

0

a0b0a0b1a0b2

a1b0a1b1a1b2

a2b0a2b1a2b2

(4a2 + 2a1 + 1a0) ∗ (4b2 + 2b1 + 1b0)

Column-Wise

986

753

421

32s5 16s4 8s3 4s2 2s1 1s0+++++

0

0

0 00

0

a0b0a0b1a0b2

a1b0a1b1a1b2

a2b0a2b1a2b2

(4a2 + 2a1 + 1a0) ∗ (4b2 + 2b1 + 1b0)

∑
i+j=0

aibj

∑
i+j=1

aibj

∑
i+j=2

aibj
∑

i+j=3

aibj
∑

i+j=4

aibj



Slicing

Partial Products. Let Pk =
∑

k= i+j

aibj .

Input Cone. For each output bit si we determine its input cone

Ii = {gate g | g is in input cone of output si}

Slice. Slices Si are defined as the difference of consecutive cones Ii:

S0 = I0 Si+1 = Ii+1 \
i⋃

j=0

Sj

Sliced Gröbner Bases. Let Gi be the set of gate and input field polynomials in Si.



Carry Recurrence Relation

Carry Recurrence Relation.
A sequence of 2n+ 1 polynomials C0, . . . , C2n is called a carry sequence if

−Ci + 2Ci+1 + si − Pi ∈ I(C) for all 0 ≤ i < 2n+ 1.

Then Ri = −Ci + 2Ci+1 + si − Pi are the carry recurrence relations for C0, . . . , C2n.

Theorem
Let C be a circuit where all carry recurrence relations are contained in I(C).
Then C is a multiplier, iff C0 − 22nC2n ∈ I(C).



Incremental Algorithm

Incremental Checking Algorithm.

input: Circuit C with sliced Gröbner bases Gi

output: Determine whether C is a multiplier

C2n ← 0

for i← 2n− 1 to 0

Ci ← Remainder ( 2Ci+1 + si − Pi, Gi )

return C0 = 0



Multipliers as And-Inverter-Graph



Multipliers as And-Inverter-Graph

Fulladder
Halfadder
XOR-Gate
Single Gates



Variable Elimination

Identify sub-circuits CS in the AIG and eliminate internal variables:

� Full-adder rewriting

� Half-adder rewriting

� XOR- Rewriting

� Common-Rewriting

Variable elimination is based on elimination theory of Gröbner bases.



Elimination theory of Gröbner bases

Elimination order. Let X = Y
·
∪ Z and we want to eliminate Z. Order the terms such that

for all terms σ, τ where a variable from Z is contained in σ but not in τ , we obtain τ < σ.

Elimination ideal. The elimination ideal J where the Z-variables are eliminated of
I ⊆ Q[X] = Q[Y, Z] is defined by

J = I ∩Q[Y ].

Elimination theorem. Given an ideal I ⊆ Q[X] = Q[Y, Z]. Further let G be a Gröbner
basis of I with respect to an elimination order Y < Z. Then the set

H = G ∩Q[Y ]

is a Gröbner basis of the elimination ideal J = I ∩Q[Y ], in particular 〈H〉 = J .



Elimination procedure

Problem: Computing a Gröbner basis H for I(C) w.r.t an elimination order is costly.

Solution: Split G into two parts.

G

GA GB

HB

HY HZ

H

Step 1: original Gröbner basis G

Step 2: split G into two subbases

Step 3: change order of <G to <H

Step 4: eliminate the variables of Z

Step 5: rejoin bases H = GA ∪HY



Elimination procedure

Theorem
Let G ⊆ Q[X] = Q[Y,Z] be a Gröbner basis with respect to some term order <G. Let
GA = G∩Q[Y ] and GB = G\GA. Let <H be an elimination order for Z which agrees with
<G for all terms that are free of Z, i.e., terms free of Z are equally ordered in <G and <H .
Suppose that 〈GB〉 has a Gröbner basis HB with respect to <H which is such that every
leading term in HB is free of Z or free of Y . Then 〈G〉 ∩Q[Y ] = (〈GA〉+ 〈GB〉) ∩Q[Y ] =

〈GA〉+ (〈GB〉 ∩Q[Y ]).

Theorem
Let G,GA, GB , HB , HY , HZ , <H , <G be as before. Then H = GA ∪ HY is a Gröbner
basis w.r.t. the ordering <H .



Example: Full-Adder Rewriting

a0 b0a0 b1a1 b0a1 b1a2 b0a2 b1

p00p01p10p11p20p21

c1

g1

g2

g0

c2

c3
s0s1s2s3s4

GA = G\GB

GB = { −g0 + p20 + p11 − 2p20p11, −g1 + p20p11, −g2 + c1g0,

−s2 + c1 + g0 − 2c1g0, −c2 + g1 + g2 − g1g2}

Original lexicographic term ordering <G:

b0 < b1 < a0 < a1 < a2 < p00 < s0 < p01 < p10 < s1 < c1 <

p11 < p20 < g0 < g1 < g2 < s2 < c2 < p21 < s3 < c3 < s4

Gröbner basis HB w.r.t. elimination order <H :

HB = {g0 + 2p20p11 − p20 − p11, g1 − p20p11,

g2 + 2p20p11c1 − p20c1 − p11c1,

s2 − 4p20p11c1 + 2p20p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1,

2c2 + s2 − p20 − p11 − c1}



Experiments

Multiplier

AIG AIGMULTOPOLY

Polynomials

CAS-File

B = {
x− a0 ∗ b0,
y − a1 ∗ b1,
s0 − x ∗ y,
. . .

}

Ideal Membership

C0 6= 0 7

C0 = 0 3

MATHEMATICA

SINGULAR



Experiments

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p11p20p21p30p31

p02p12p22p32

p03p13p23p33

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p02p11p20p12p21p30p22p31

p03p13p23p32

p33



Experiments

mult n

Mathematica Singular
non-inc incremental non-inc incremental

+xor +xor +add +xor +xor +add
btor 16 3 5 2 1 1 1 1 1
btor 32 56 31 14 2 42 28 10 1
btor 64 MO 292 131 11 MO MO MO 14
btor 128 TO TO TO 101 EE EE EE EE

sp-ar-rc 16 9 7 4 1 TO 6 1 0
sp-ar-rc 32 326 171 30 2 TO 242 28 2
sp-ar-rc 64 MO TO 300 11 MO EE MO 16
sp-ar-rc 128 TO TO TO 102 EE EE EE EE

Table: time in sec; TO = 1200 sec, MO = 14GB, EE=more than 32767 variables



Current Work - Generating Proofs

� Polynomial calculus as frame-work
� Define a more practical calculus
� Generate and certify low-level algebraic proofs
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Figure: Length and size of btor-btor commutativity check



Future Work

Circuit Verification

� other word-level operators (shift, division, . . . )

� more complex multipliers

� negative numbers

Proof Generation

� connection to clausal proof systems

� certified proof checker

� boolean proofs
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