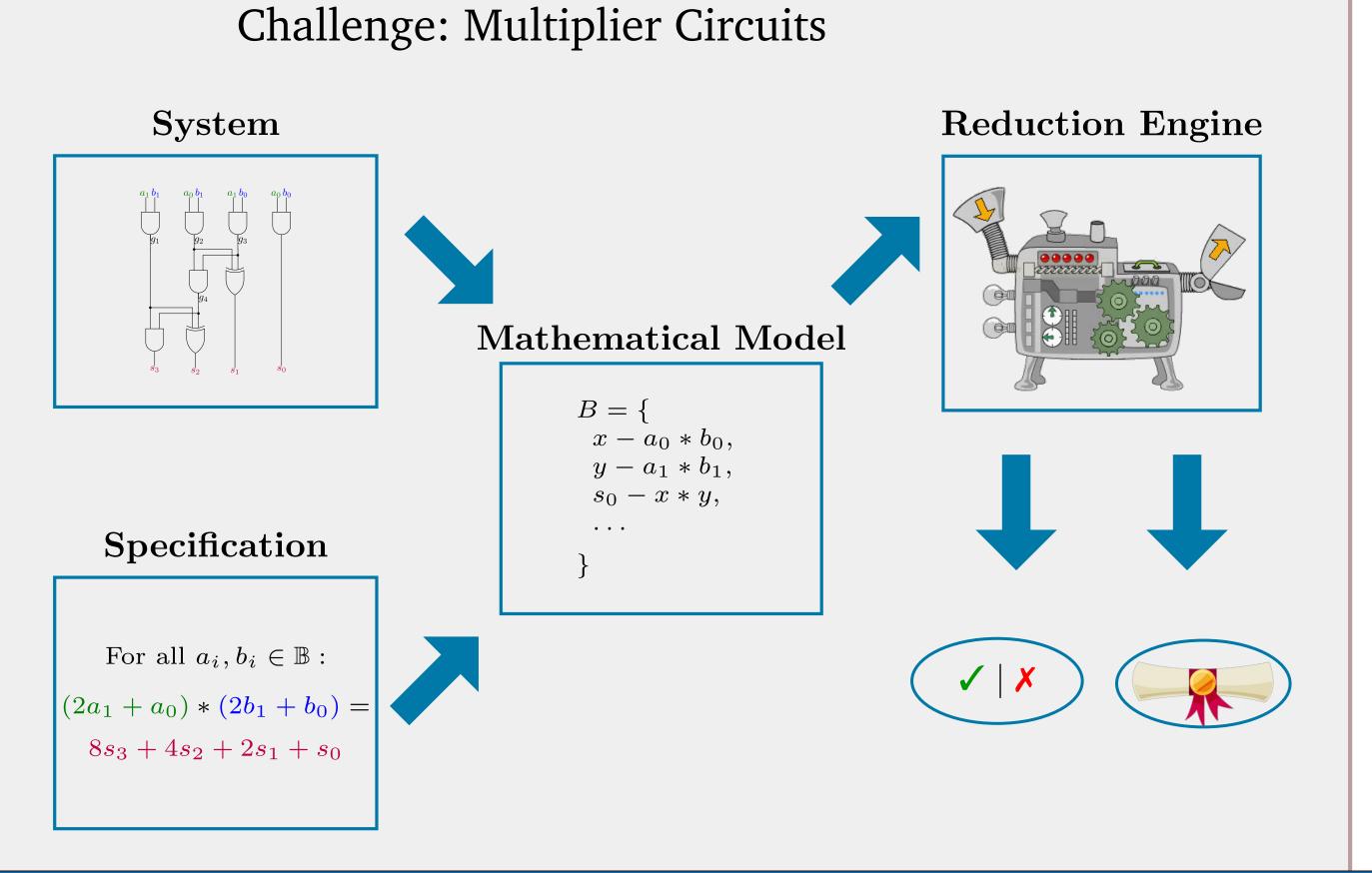
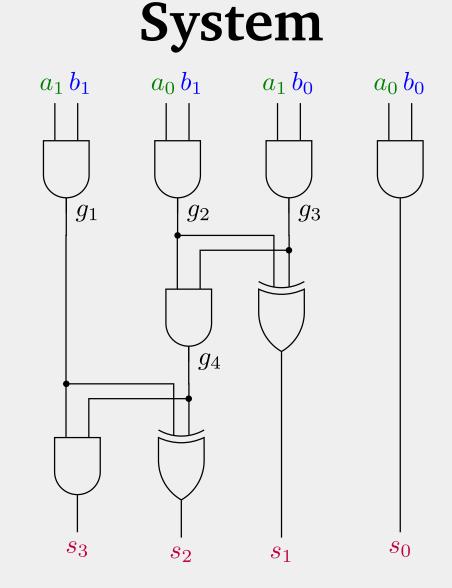
Fast Formal Verification of Multiplier Circuits using Computer Algebra

Daniela Kaufmann fmv.jku.at/kaufmann

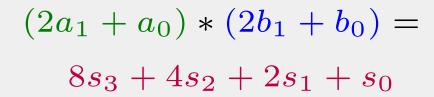
Bugs in hardware are expensive!



Computer Algebra



Specification



Model

	Δ.	roder
$s_3 = g$	$_1 \wedge g_4$	$-s_3+g_1g_4,$
$s_2 = g_1$	$_{oldsymbol{\perp}}\oplus g_{4}$	$-s_2 - 2g_4g_1 + g_4 + g_1,$
$g_4 = g_5$	$g_2 \wedge g_3$	$-g_4+g_2g_3,$
$s_1 = g_2$	$g_3 \oplus g_3$	$-s_1 - 2g_2g_3 + g_2 + g_3,$
$g_1 = a$	$_1 \wedge b_1$	$-g_1 + a_1b_1,$
$g_2 = a$	$0 \wedge b_1$	$-g_2 + a_0b_1,$
$g_3 = a$	$1 \wedge b_0$	$-g_3 + a_1b_0,$
$s_0 = a$	$0 \wedge b_0$	$-s_0 + a_0 b_0,$
a	$a_1 \in \mathbb{B}$	$-a_1^2 + a_1,$
a	$a_0 \in \mathbb{B}$	$-a_0^2 + a_0,$
b	$e_1 \in \mathbb{B}$	$-b_1^2 + b_1,$

Reduction

 $-b_0^2 + b_0$

 $b_0 \in \mathbb{B}$

 $8s_3 + 4s_2 + 2s_1 + s_0 - 4a_1b_1 - 2a_1b_0 - 2a_0b_1 - a_0b_0$ $4s_2 + 8g_4g_1 + 2s_1 + s_0 - 4a_1b_1 - 2a_1b_0 - 2a_0b_1 - a_0b_0$ $4g_4 + 2s_1 + 4g_1 + s_0 - 4a_1b_1 - 2a_1b_0 - 2a_0b_1 - a_0b_0$

Contributions

Precise Formalization

Let $I(C) = \{ p \in \mathbb{Q}[X] \mid p(X) = 0 \text{ for all } a_0, \dots, a_{n-1}, b_0, \dots, b_{n-1} \in \mathbb{B} \}.$ Let $J(C) = \langle -s_3 + g_1 g_4, -s_2 - 2g_1 g_4 + g_4 + g_1, \ldots \rangle \subseteq \mathbb{Q}[X].$

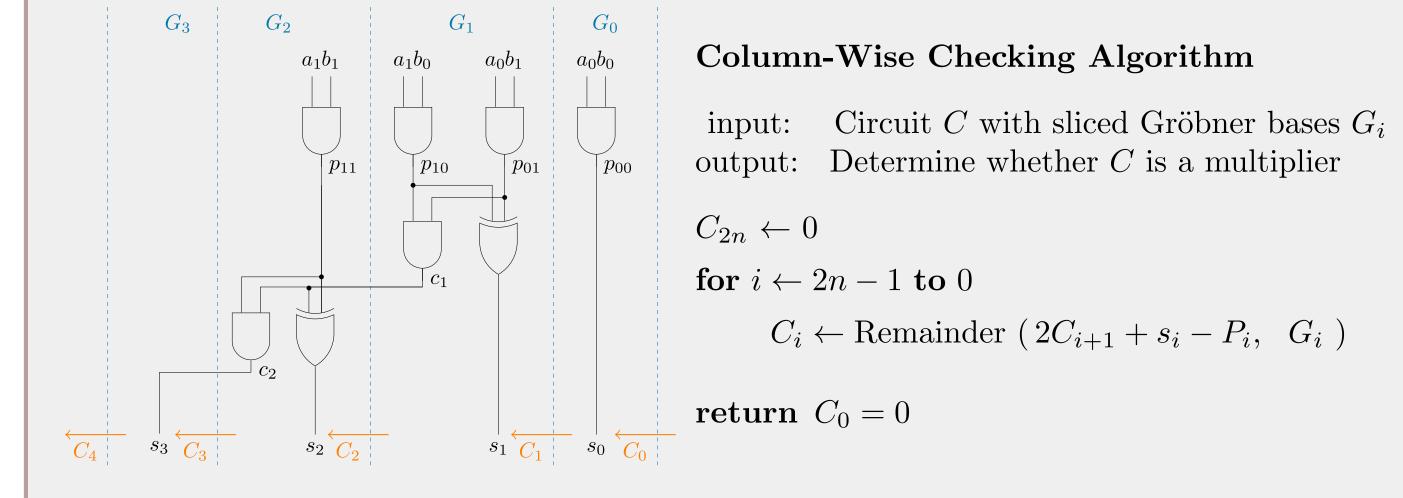
A circuit C is a multiplier iff $\sum_{i=0}^{2n-1} 2^i s_i - (\sum_{i=0}^{n-1} 2^i a_i) (\sum_{i=0}^{n-1} 2^i b_i) \in I(C)$.

Soundness and completeness: For acyclic circuits C, we have J(C) = I(C).

Incremental Column-Based Algorithm

[FMCAD'17]

[FMCAD'17]



Proof Certificates

[SC2'18]

Practical algebraic calculus:

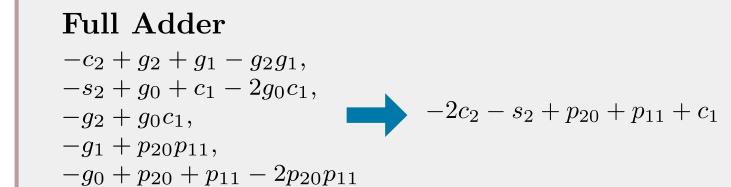
Sequence $P = (p_1, \dots p_n)$, where each p_k is obtained by:

 p_i appearing earlier in the proof, q arbitrary $*: p_i, q, qp_i;$

Certificates are obtained as by-product of polynomial reduction.

Simplified Rewriting Techniques

• Previously: Identify syntactic patterns.



- New: Identify single-dependency variables.
- Eliminate internal variables.
- Uses elimination theory of Gröbner bases.

Modular Reasoning

[FMCAD'19]

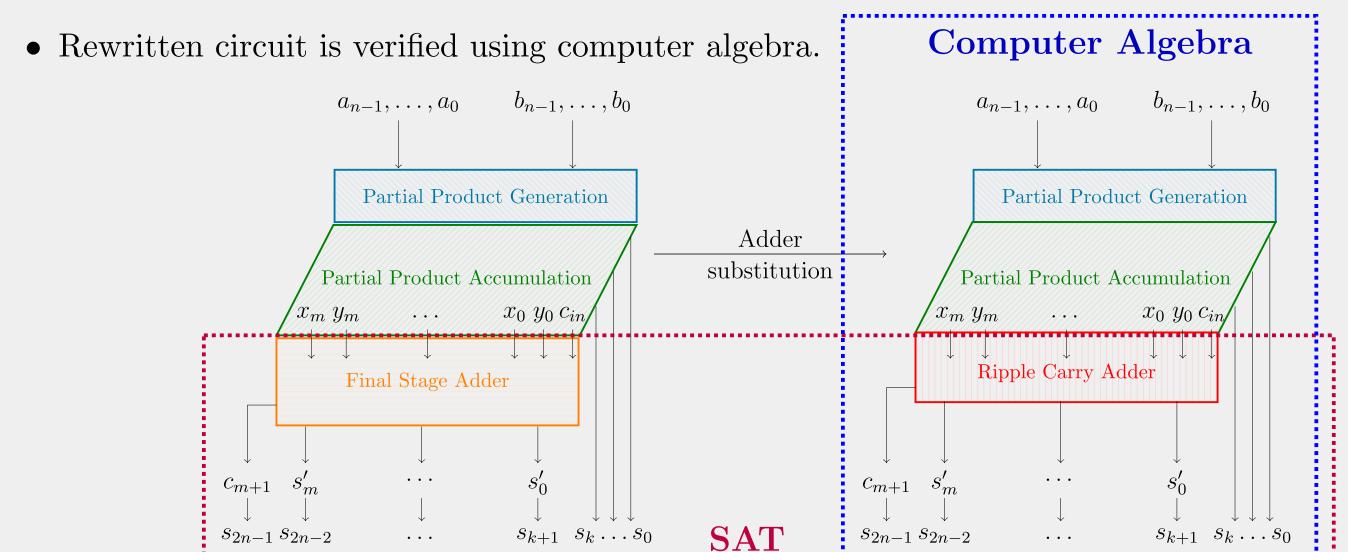
[DATE'18, FMCAD'19]

- Use polynomial ring $\mathbb{Z}_{2^l}[X]$, with $l \in \mathbb{N}$, instead of $\mathbb{Q}[X]$.
- Eliminates certain vanishing monomials.
- Allows verification of truncated multipliers.

SAT & Computer Algebra

[FMCAD'19, DATE'20]

- Substitute final stage adders by simpler adder circuits.
- Correctness of replacement is verified using SAT.



Experimental Results

Verification Tool AMulet [github.com/d-kfmnn/amulet] • 192 multiplier architectures. • Input bit-width n = 64. RevSCA-2.0 (S) 200 • Time out: 300 sec. Comparing to • ABC: M. Ciesielski et al., TCAD, 2019. • RevSCA: A. Mahzoon et al., DAC, 2019. • RevSCA-2.0: A. Mahzoon et al., 2020. #Instances

AMulet & Proof Checker PACtrim

[fmv.jku.at/pac]

• Time in min.

- Scales up to bit-width 2048.
- None of related work produces certificates.

architecture b	1 1,1	Verify			Verify + Certificates				Check Certificates			total	
	bit-width	sub	sat	c.alg	tot	sub	sat	c.alg	tot	sat	c.alg	tot	total
btor	512	0	0	16	16	0	0	23	23	0	7	7	30
kjvnkv	512	0	0	13	13	$\parallel 0$	0	15	15	0	9	9	25
sp-ar-rc	512	0	0	13	13	$\parallel 0$	0	16	16	0	10	10	26
sp-dt-lf	512	1	0	25	26	\parallel 1	0	25	26	0	11	11	37
sp-wt-bk	512	1	0	26	27	$\parallel 0$	0	26	26	0	11	11	38
btor	1024	2	0	177	179	2	0	219	219	0	51	51	272
kjvnkv	1024	2	0	91	93	$\parallel 2$	0	172	172	0	72	72	245
btor	2048	17	0	1493	1 510	17	0	2552	2552	0	430	430	2982
kjvnkv	2048	18	0	1129	1147	18	0	2077	2077	0	1228	1228	3307