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MULTIPLIER MITERS

In the benchmark description of our arithmetic challenge
problems [1] submitted to the SAT Competition 2016, we
have mentioned that there is another source of multiplier
designs, which we could not retrieve back then. These circuits
described in [2] were used in [3] and then synthesized and
translated to AIGs in our related work [4]. Furthermore, the
corresponding web-service “Arithmetic Module Generator” for
generating the circuits (in Verilog) became recently available
again at https://www.ecsis.riec.tohoku.ac.jp/topics/amg/. For
the SAT Race 2019 we generated AIG miters and encoded
them into CNF for interesting bit-widths 10, 12 and 14, where
SAT solvers not using algebraic reasoning start to have a hard
time. These benchmarks compare pairwise several multipli-
ers with different architectures and characteristics. We also
considered unsigned multipliers and a few signed multipliers
(these are all n × n inputs to 2n bits outputs multipliers
where signedness makes a difference). We compare two signed
architectures “2cbpwtcl” and “2csparrc” with prefix “eq2. . .”
which gives 6 signed benchmarks for bit-widths 10,12,14. The
12 unsigned multiplier architectures we compare are

bparcl, bparrc, bpctbk, bpdtlf, bpwtcl, bpwtrc,
sparcl, sparrc, spctbk, spdtlf, spwtcl, spwtrc

for bit-widths 10,12 and 14, which gives 396 = 3 · 12 · 11
unsigned benchmarks (all with “eq. . .” but without “eq2”,
“btor” nor “ktsb” in their name).

KARATSUBA MULTIPLICATION

As crafted benchmark we generated a bit-vector imple-
mentation of a single recursive step of the well-known
Karatsuba multiplication algorithm. The implementation is
then compared against a full multiplier of the same archi-
tecture (BTOR). We submitted only the three benchmarks
“eqbtor10ktsb{10,12,14}*.cnf” for bit-widths 10,12 and 14.

THE CRUX OF MULTIPLIER VERIFICATION

During our work on multiplier verification we came across
the issue that within a single column of a multiplier circuit
(producing a certain output bit) the sum of the partial products
can be permuted in an arbitrary order. Since adding up these
partial products within a column needs adders of logarithmic
size this summation requires bit-vector reasoning. In different
multipliers these adders are ordered and grouped differently,
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which we conjecture to be the “crux” of multiplier verification
on the bit-level.

To capture this problem we generated benchmarks which
add up n bits with two input adder trees in a random order
and grouping. The input bits are zero extended to m bits,
which is the minimum number such that 2m > n. Then we
generate two different random adder trees. Each tree consists
of n− 1 adders of bit-width m. The outputs of the two trees
are compared, which is getting hard for standard SAT solvers
on the CNF level at around n = 30 bits. We used 10 different
seeds for n = 20, . . . , 32 and thus submitted 130 benchmarks
“cruxmiters{20,. . . ,32}seed[0-9].cnf”.

INTEGER OVERFLOW CHECK

In program analysis of code similar to the following C pro-
gram, the overflow check might yield hard bit-vector problems:

void *calloc (size_t a, size_t b) {
if (((size_t)-1) / a < b) return NULL;
return memset (malloc (a*b), 0, a*b);

}

Here is a corresponding SMT formula for this check

(set-logic QF_BV)
(declare-fun a () (_ BitVec 32))
(declare-fun b () (_ BitVec 32))
(assert
(not (=

((_ extract 63 32)
(bvmul ((_ zero_extend 32) a)

((_ zero_extend 32) b)))
(_ bv0 32))))

(assert
(bvuge (bvudiv (bvnot (_ bv0 32)) a) b))

This is for a 32-bit machine. We generated 29 instances for bit-
widths 20 to 48 called “davidcokchallenge{20,. . . ,48}.cnf”.
This problem is getting hard around 36 bits.
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