
Arithmetic Verification Problems
Submitted to the SAT Race 2019

Daniela Kaufmann Manuel Kauers Armin Biere
Johannes Kepler University Linz

David Cok
Safer Software Consulting

MULTIPLIER MITERS

In the benchmark description of our arithmetic challenge
problems [1] submitted to the SAT Competition 2016, we
have mentioned that there is another source of multiplier
designs, which we could not retrieve back then. These circuits
described in [2] were used in [3] and then synthesized and
translated to AIGs in our related work [4]. Furthermore, the
corresponding web-service “Arithmetic Module Generator” for
generating the circuits (in Verilog) became recently available
again at https://www.ecsis.riec.tohoku.ac.jp/topics/amg/. For
the SAT Race 2019 we generated AIG miters and encoded
them into CNF for interesting bit-widths 10, 12 and 14, where
SAT solvers not using algebraic reasoning start to have a hard
time. These benchmarks compare pairwise several multipli-
ers with different architectures and characteristics. We also
considered unsigned multipliers and a few signed multipliers
(these are all n × n inputs to 2n bits outputs multipliers
where signedness makes a difference). We compare two signed
architectures “2cbpwtcl” and “2csparrc” with prefix “eq2. . .”
which gives 6 signed benchmarks for bit-widths 10,12,14. The
12 unsigned multiplier architectures we compare are

bparcl, bparrc, bpctbk, bpdtlf, bpwtcl, bpwtrc,
sparcl, sparrc, spctbk, spdtlf, spwtcl, spwtrc

for bit-widths 10,12 and 14, which gives 396 = 3 · 12 · 11
unsigned benchmarks (all with “eq. . .” but without “eq2”,
“btor” nor “ktsb” in their name).

KARATSUBA MULTIPLICATION

As crafted benchmark we generated a bit-vector imple-
mentation of a single recursive step of the well-known
Karatsuba multiplication algorithm. The implementation is
then compared against a full multiplier of the same archi-
tecture (BTOR). We submitted only the three benchmarks
“eqbtor10ktsb{10,12,14}*.cnf” for bit-widths 10,12 and 14.

THE CRUX OF MULTIPLIER VERIFICATION

During our work on multiplier verification we came across
the issue that within a single column of a multiplier circuit
(producing a certain output bit) the sum of the partial products
can be permuted in an arbitrary order. Since adding up these
partial products within a column needs adders of logarithmic
size this summation requires bit-vector reasoning. In different
multipliers these adders are ordered and grouped differently,

Supported by FWF, NFN Grant S11408-N23 (RiSE)

which we conjecture to be the “crux” of multiplier verification
on the bit-level.

To capture this problem we generated benchmarks which
add up n bits with two input adder trees in a random order
and grouping. The input bits are zero extended to m bits,
which is the minimum number such that 2m > n. Then we
generate two different random adder trees. Each tree consists
of n− 1 adders of bit-width m. The outputs of the two trees
are compared, which is getting hard for standard SAT solvers
on the CNF level at around n = 30 bits. We used 10 different
seeds for n = 20, . . . , 32 and thus submitted 130 benchmarks
“cruxmiters{20,. . . ,32}seed[0-9].cnf”.

INTEGER OVERFLOW CHECK

In program analysis of code similar to the following C pro-
gram, the overflow check might yield hard bit-vector problems:

void *calloc (size_t a, size_t b) {
if (((size_t)-1) / a < b) return NULL;
return memset (malloc (a*b), 0, a*b);

}

Here is a corresponding SMT formula for this check

(set-logic QF_BV)
(declare-fun a () (_ BitVec 32))
(declare-fun b () (_ BitVec 32))
(assert
(not (=

((_ extract 63 32)
(bvmul ((_ zero_extend 32) a)

((_ zero_extend 32) b)))
(_ bv0 32))))

(assert
(bvuge (bvudiv (bvnot (_ bv0 32)) a) b))

This is for a 32-bit machine. We generated 29 instances for bit-
widths 20 to 48 called “davidcokchallenge{20,. . . ,48}.cnf”.
This problem is getting hard around 36 bits.

REFERENCES

[1] A. Biere, “Collection of combinational arithmetic miters submitted to the
SAT Competition 2016,” in SAT Competition 2016, ser. Department of
Computer Science Series of Publications B, T. Balyo, M. Heule, and
M. Järvisalo, Eds., vol. B-2016-1. Univ. Helsinki, 2016, pp. 65–66.

[2] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Formal design
of arithmetic circuits based on arithmetic description language,” IEICE
Transactions, vol. 89-A, no. 12, pp. 3500–3509, 2006.

[3] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in DATE. IEEE, 2016, pp. 1048–1053.

[4] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of mul-
tipliers using computer algebra,” in FMCAD, D. Stewart and G. Weis-
senbacher, Eds. IEEE, 2017, pp. 23–30.

https://www.ecsis.riec.tohoku.ac.jp/topics/amg/

