
Formal Methods in Computer-Aided Design 2020

The Proof Checkers Pacheck and Pastèque
for the Practical Algebraic Calculus

Daniela Kaufmann Mathias Fleury Armin Biere
Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

daniela.kaufmann@jku.at mathias.fleury@jku.at armin.biere@jku.at

Abstract—Generating and checking proof certificates is impor-
tant to increase the trust in automated reasoning tools. In recent
years formal verification using computer algebra became more
important and is heavily used in automated circuit verification.
An existing proof format which covers algebraic reasoning and al-
lows efficient proof checking is the practical algebraic calculus. In
this paper we present two independent proof checkers PACHECK
and PASTÈQUE. The checker PACHECK checks algebraic proofs
more efficiently than PASTÈQUE, but the latter is formally
verified using the proof assistant Isabelle/HOL. Furthermore,
we introduce extension rules to simulate essential rewriting
techniques required in practice. For efficiency we also make use
of indices for existing polynomials and include deletion rules too.

I. INTRODUCTION

Formal verification aims to guarantee the correctness of a
given system with respect to a certain specification. However,
the verification process might contain errors. In order to
increase the trust in verification results, it is common to
generate proof certificates, which can be checked by a stand-
alone proof checker. For example, in the SAT competition
certificates of unsatisfiability are required since 2013 and
different resolution and clausal proof formats [1], such as
DRUP [2], [3], DRAT [4], and LRAT [5] are available.

Automated reasoning based on computer algebra has a long
history [6]–[8] with renewed recent interest; e.g., it provides
the state of the art in verifying gate-level multipliers [9]–
[12]. Furthermore, algebraic reasoning in combination with
satisfiability checking (SAT) is succesfully used to solve
complex combinatorial problems [13]–[16] with possible future
applications in cryptanalysis [17]–[19].

The practical algebraic calculus (PAC) [20] is a proof format
to represent certificates for validating results of such algebraic
techniques. It is based on the polynomial calculus (PC) [21]
and allows to dynamically capture that a polynomial can
be derived from a given set of polynomials using algebraic
ideal theory. In contrast to PC, PAC proofs can be checked
efficiently, for example using our tool PACTRIM [20].

In this paper we add an indexing scheme to PAC and also
propose deletion and extension rules. Our paper contains no
new theory, except for the more technical formalization of
extensions. This allows us to merge and check proofs obtained
from SAT and computer algebra [22], the current state-of-the-
art, in a uniform (and now precise) manner. The purpose
of this system description is to define the new version of
PAC and present our new checkers PACHECK and PASTÈQUE.
Furthermore, PASTÈQUE in contrast to PACHECK is verified

in Isabelle/HOL, but PACHECK is faster and more memory
efficient (also compared to PACTRIM). A preliminary version
of this paper is included in the first author’s PhD thesis [23].

II. PRACTICAL ALGEBRAIC CALCULUS

In this section we briefly introduce the algebraic notion
following [24]. Let X be the set of variables {x1, . . . , xn}
and further let G ⊆ Z[X] and f ∈ Z[X].

Algebraic proof systems reason about polynomial equations.
The aim is to show that the equation f = 0 is implied by the
equations g = 0 for every g ∈ G; i.e., every common root of
the polynomials g ∈ G is also a root of f . In algebraic terms,
this question means to derive whether f belongs to the ideal
generated by G. A nonempty subset I ⊆ Z[X] is called an
ideal if ∀u, v ∈ I : u+v ∈ I and ∀w ∈ Z[X],∀u ∈ I : wu ∈ I .
If G = {g1, . . . , gm} ⊆ Z[X], then the ideal generated by G is
defined as 〈G〉 = {q1g1 + · · ·+ qmgm | q1, . . . , qm ∈ Z[X]}.

For a given set of polynomials G ⊆ Z[X], a model is a point
u = (u1, . . . , un) ∈ Zn such that ∀g ∈ G : g(u1, . . . , un) = 0.
Here, by g(u1, . . . , un) we mean the element of Z obtained
by evaluating the polynomial g for x1 = u1, . . . , xn = un.

PAC proofs [20] are sequences of proof rules. We introduce
the semantics of PAC as a transition system. Let P denote a
sequence of polynomials, which can be accessed via indices.
We write P (i) = ⊥ to denote that the sequence P at index i
does not contain a polynomial, and P (i 7→ p) to determine
that P at index i is set to p.

The initial state is (X = Var (G ∪ {f}), P) where P maps
indices to polynomials of G. For bit-level verification [20]
only models of the Boolean domain {0, 1}n are of interest. In
previous work, we added the set of Boolean-value constraints
B(X) = {x2 − x | x ∈ X} to G and had to include steps in
the proofs that operate on these Boolean-value constraints. In-
stead, we now handle operations on Boolean-value constraints
implicitly to reduce the number of proof steps. That is, when
checking the correctness, we immediately reduce exponents
greater than one in the polynomials. The following two rules
model the properties of ideals as introduced above.

[ADD (i, j, k, p)] (X,P) =⇒ (X,P (i 7→ p))

provided that P (j) 6= ⊥, P (k) 6= ⊥, P (i) = ⊥,
p ∈ Z[X]/〈B(X)〉, and p = P (j)+P (k) mod 〈B(X)〉.

[MULT (i, j, q, p)] (X,P) =⇒ (X,P (i 7→ p))

provided P (j) 6= ⊥, P (i) = ⊥, p, q ∈ Z[X]/〈B(X)〉,
and p = q · P (j) mod 〈B(X)〉.

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD20
https://orcid.org/0000-0002-5645-0292
https://orcid.org/0000-0002-1705-3083
https://orcid.org/0000-0001-7170-9242
daniela.kaufmann@jku.at
mathias.fleury@jku.at
armin.biere@jku.at
https://creativecommons.org/licenses/by/4.0/

letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘A ’ | ‘B ’ | . . . | ‘Z ’
number ::= ‘0 ’ | ‘1 ’ | . . . | ‘9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

term ::= variable (‘* ’ variable)∗

monomial ::= constant | [constant ‘* ’] term
polynomial ::= [‘- ’] monomial (‘+ ’ | ‘- ’ monomial)∗

index ::= constant
input ::= (index polynomial ‘; ’)∗

add rule ::= index ‘+ ’ index ‘, ’ index ‘, ’ polynomial ‘; ’
mul rule ::= index ‘* ’ index ‘, ’ polynomial ‘, ’ polynomial ‘; ’
del rule ::= index ‘d ’ ‘; ’
ext rule ::= index ‘= ’ variable ‘, ’ polynomial ‘; ’

proof ::= (add rule | mul rule | del rule | ext rule)∗

target ::= polynomial ‘; ’

Figure 1. Syntax of input polynomials, target, and proofs in PAC-format

If in either one of the above rules p is also the target
polynomial f , it holds that f ∈ 〈G〉. In the original PAC format
introduced in [20], it was necessary to explicitly provide the
antecedents P (i) and P (j). In our new format, we use indices
i and j to access polynomials, similar to LRAT [5]. The new
syntax is given in Fig. 1 and an example is provided with
our tools [25]. Naming polynomials by indices reduces the
proof size and makes parsing more efficient, because only the
conclusion polynomials of each rule and the initial polynomials
of G are stated explicitly. However, introducing indices for
polynomials has the effect that the semantics of P changes from
sets to multisets, as in DRAT [3], and it is possible to introduce
the same polynomial under different names. Checking the
result of each rule allows pinpointing the first error, instead
of claiming that the proof is wrong somewhere in one of the
(usually millions) of steps.

We extend our original proof rules [20] by adding a deletion
and an extension rule. In the deletion rule we remove poly-
nomials from P which are not needed anymore in subsequent
steps to reduce the memory usage of our tools.

[DELETE(i)] (X,P) =⇒ (X,P (i 7→ ⊥))

A. Extension

In our previous work [22], we converted DRUP proofs to
the PAC format and encountered the need to extend the initial
set of polynomials G to reduce the size of the polynomials in
the PAC proof. We included polynomials of the form −fx +
1− x, similar to the negation rule in the polynomial calculus
with resolution [26], which introduced the variable fx as the
negation of the Boolean variable x.

However, at that point we did not use proper extension rules,
but simply added these extension polynomials to the initial
polynomials G. This may affect the models of the constraint
set, because any arbitrary polynomial can be added as initial
constraints. For example, we could simply add the constant
polynomial 1 to G, which makes any PAC proof obsolete. To
prevent this issue we add an extension rule to PAC, which
allows to add further polynomials to the knowledge base with
new variables while preserving the original models on the
original variable set of variables X .

[EXT (i, v, p)] (X,P) =⇒ (X ∪ {v}, P (i 7→ −v + p))

provided that P (i) = ⊥ and v /∈ X and p ∈
Z[X]/〈B(X)〉, and p2 − p ≡ 0 mod 〈B(X)〉.

With this extension rule, variables v can act as placeholders for
polynomials p, i.e., −v + p = 0, which enables more concise
proofs. The variables v are not allowed to occur earlier in the
proof. Furthermore, to preserve Boolean models, we require
p2 − p ≡ 0 mod 〈B(X)〉. Without this condition v might
take non-Boolean solutions and thus force us to calculate in
the ring Z[X, v]/〈B(X)〉 instead of Z[X, v]/〈B(X, v)〉.

Consider for example P = {−y+x−1}. The only Boolean
model is (x, y) = (1, 0). If we extend P by −v + x + 1 we
derive v = 2, because x = 1 for all models of P . Thus
v2 − v = 0 does not hold.

Proposition 1. EXT preserves the original models on X .

Proof. We show that adding pv := −v + p does not affect the
models of P ⊆ Z[X]/〈B(X)〉. Let “<” be a lexicographic
ordering, H a Gröbner basis [27] of 〈P 〉 w.r.t. “<”, and “<v”
be an extension of “<” with v as largest element. Thm. 3
of [28] shows that H ∪ {pv} is a Gröbner basis w.r.t. “<v”
for 〈Pv〉 := 〈P (i 7→ pv)〉 ⊆ Z[X ∪ {v}]/〈B(X ∪ {v})〉, the
extended ideal, and 〈Pv〉 ∩ Z[X]/〈B(X)〉 = 〈H ∪ {pv}〉 ∩
Z[X]/〈B(X)〉 = 〈H〉 = 〈P 〉 follows.

III. PACHECK

We implemented PACHECK as an extension of our pre-
vious checker PACTRIM [20]. It consists of approximately
1 700 lines of C code and is published [25] under MIT license.
The default mode of PACHECK supports the extended version
of PAC, as presented in this paper, for the new syntax using
indices. PACHECK is backwards compatible to our original
format of PAC [20] and all features including reasoning with
exponents are supported. However, extension rules are only
supported for Boolean models.

PACHECK reads three input files <input>, <proof>,
and <target> and then verifies that the polynomial in
<target> is contained in the ideal generated by the poly-
nomials in <input> using the rules provided in <proof>.
The polynomial arithmetic needed for checking the proof rules
is implemented from scratch. In PACHECK polynomials are
stored as ordered linked lists of monomials, where a monomial
consists of a coefficient and a term. The coefficients are
represented using the GMP library [29]. Terms are ordered
linked list of variables that are identified as strings.

In the default mode of PACHECK we order variables in terms
lexicographically using strcmp. All internally allocated terms
in linked lists are shared using a hash table. It turns out that the
order of variables has an enormous effect on memory usage,
since different variable orderings induce different terms. For
example, given the monomials xyz and x′yz, sharing of yz
is possible for the order x′ > x > y > z, whereas no sharing
occurs for y > x > z > x′. For one example with more than
7 million proof steps, using -1*strcmp as sorting function
leads to an increase of 50% in memory usage. A further option

for sorting the variables is to use the same variable ordering
as in the given proof files. That is, we assign increasing
level values to new variables and sort according to this
value. However, the best ordering that maximizes internal
sharing cannot be determined in advance from the original
constraint set, as it highly depends on the applied operations
in the proof rules. PACHECK supports the orderings strcmp,
-1*strcmp, level, and -1*level. Terms in polynomials
are sorted using the same order as for the variables.

In the initial phase of PACHECK each polynomial from
<input> is sorted and stored as an inference. Inferences
consist of a given index and a polynomial and are stored in
a hash table. In the default mode, the index acts as the hash
value. Thus it is possible to add the same polynomial twice. If
the original format of PAC is used, a hash value is computed
based on the input polynomial. Proof checking is applied on-
the-fly. We parse each rule of <proof> and immediately
apply the necessary checks discussed in Sect. II. If the rule
is either ADD or MULT, we have to compute whether the
conclusion polynomial of the rule is equal to the arithmetic
operation performed on the antecedent polynomials.

We modified the algorithm of polynomial addition in
PACTRIM and now assume the monomials of polynomials to be
sorted. Addition of polynomials is performed by merging their
monomials in an interleaved way. In PACTRIM we pushed the
monomials of both polynomials on a stack and then sorted
and merged them. Normalization of the exponents is not
necessary in the ADD rule, but we still use this technique
for multiplication of polynomials, where we multiply each
monomial of the first polynomial with each monomial of the
second monomial. In the MULT rule we normalize exponents
larger than one, before testing equality. Furthermore, we check
whether the conclusion polynomial of the rules ADD or MULT
matches the polynomial in <target> in order to identify
whether the target polynomial was derived.

The original version of PACTRIM [20] did not allow to
delete inferences. As a consequence the set of polynomials
increased with each proof rule, leading to memory exhaustion
for very large proofs. In PACHECK we now support deletion
of inferences. A partial solution for deletion was used in [9]
to reduce memory usage. However, in contrast to our new
version, individual inferences could not be deleted (only both
antecedents of a proof step could be). Extension variables were
not supported in PACTRIM [20] either.

IV. PASTÈQUE

To further increase trust in the verification, we implemented
a verified checker called PASTÈQUE in the proof assistant
Isabelle/HOL [30]. It follows a “refinement” approach, starting
with an abstract specification of ideals, which we then refine
with the Isabelle Refinement Framework [31] to the transition
system from Sect. II, and further down to executable code
using Isabelle’s code generator [32]. The Isabelle files have
been made available [33]. The generated code consists of
2 800 lines Standard ML (2 400 generated by Isabelle, 400 for
the parser) and is also available [25] under MIT license.

On the most abstract level, we start from Isabelle’s definition
of ideals. The specification states that if “success” is returned,
the target is in the ideal. Then we formalize PAC and prove that
the generated ideal is not changed by the rules. Proving that
PAC respects the specification on ideals was not obvious due
to limited automation and development of the Isabelle library
of polynomials (e.g., neither “Var (1) = ∅” nor “p 6= 0 =⇒
X ∈ Var (X × p)” are present). However, Sledgehammer [34]
automatically proved many of these simple lemmas.

While the input format identifies variables as strings, Isabelle
only supports natural numbers as variables. Therefore, we
use an injective function to convert between the abstract
specification of polynomials (with natural numbers as variables)
and the concrete manipulations (with strings as variables). The
code does not depend on this function, only the correctness
theorem does. Injectivity is only required to check that
extension variables did not occur before.

In the third refinement stage, SEPREF [35] changes data
structures automatically, such as replacing the set of variables
X by a hash-set. Finally, we use the code generator to produce
code. This code is combined with a trusted parser and can be
compiled using the Standard ML compiler MLTON [36].

The implementation is not backwards compatible and less
sophisticated than PACHECK’s. In particular, even if terms
are sorted, sharing is not considered (neither of variables or
of monomials) as it can be executed partially by the compiler,
although not guaranteed by Standard ML semantics. Some
sharing could be performed by the garbage collector. We tried
to enforce sharing by using MLTON’s shareAll function
and by using a hash map during parsing, i.e., using a hash
map that assigns a variable to “itself” (the same string, but
potentially at a different memory location) and normalize every
occurrence. However, performance became worse.

PASTÈQUE is four times slower than PACHECK. First, this
is due to Standard ML. While Isabelle’s code generator to
LLVM [37] produces much faster code, we need integers of
arbitrary large size, which is currently not supported. Also
achieving sharing is entirely manual, which is challenging
due to the use of separation logic SEPREF. Second, there
is no axiomatization of file reading and hence parsing must
be applied entirely before calling the checker in order for the
correctness theorem to apply. This is more memory intensive
and less efficient than interleaving parsing and checking.
PASTÈQUE can be configured via the uloop option to either
use the main loop generated by Isabelle (parsing before calling
the generated checker) or instead use a hand-written copy of
the main loop, the unsafe loop, where parsing and checking is
interleaved. The performance gain is large (on sp-ar-cl-64
with 32 GB RAM, the garbage collection time went from 700 s
down to 25 s), but only the checking functions are verified, not
the main loop.

V. TOOL DEMONSTRATION

In this section we show an example of a PAC proof and the
output of our new checkers, which demonstrates the usage of
our tools PACHECK and PASTÈQUE.

Example 1. Let x̄ ∨ ȳ and y ∨ z be two clauses. From these
clauses we are able to derive the clause x̄∨z using resolution.
We show how this derivation can be covered in PAC.

The clauses are translated into polynomial equations using
De Morgan’s laws and using the fact that a logical AND can
be represented by multiplication. For example, from x̄ ∨ ȳ =
> ⇔ x ∧ y = ⊥ we derive the polynomial equation xy = 0.

We translate the given clauses, which builds our input
<res.input> and the target <res.target>. For the PAC
proof in <res.proof> we introduce an extension variable fz ,
which models the negation of z, i.e. −fz + 1− z = 0. We use
this extension to reduce the size of the conclusion polynomials.
The PAC proof shows only some possible deletion rules, adding
more deletion rules is possible. The files of this example are
available [25].

<res.input> <res.proof>
1 x*y; 3 = fz, -z+1;
2 y*z-y-z+1; 4 * 3, y-1, -fz*y+fz-y*z+y+z-1;

5 + 2, 4, -fz*y+fz;
2 d;
4 d;

<res.target> 6 * 1, fz, fz*x*y;
-x*z+x; 1 d;

7 * 5, x, -fz*x*y+fz*x;
8 + 6, 7, fz*x;
9 * 3, x, -fz*x-x*z+x;
10 + 8, 9, -x*z+x;

We give these files to PACHECK and PASTÈQUE and the
results are provided in the Figs 2 and 3.

$ pacheck res.input res.proof res.target
[pacheck] Pacheck Version 001
[pacheck] Practical Algebraic Calculus Proof Checker
[pacheck] Copyright (C) 2020, Daniela Kaufmann, JKU
[pacheck] compressed mode with indices assumed
[pacheck] checking target enabled
[pacheck] reading target polynomial from 'res.target'
[pacheck] read 8 bytes from 'res.target'
[pacheck] reading original polynomials from 'res.input'
[pacheck] found 2 original polynomials in 'res.input'
[pacheck] read 20 bytes from 'res.input'
[pacheck] reading polynomial algebraic calculus proof from

'res.proof'↪→
[pacheck] found and checked 8 inferences in 'res.proof'
[pacheck] read 219 bytes from 'res.proof'
[pacheck] found 1 target polynomial inference
[pacheck] proof length 10 (number of polynomials)
[pacheck] proof size 25 (on average 2.5 terms per

polynomial)↪→
[pacheck] proof degree 3 (internal maximum degree 3)
[pacheck] searched 32 inferences 0.1 average collisions
[pacheck] 10 inferences, 3.2 average searches
[pacheck] original inferences 2 (20% of total rules)
[pacheck] inference rules 8 (80% of total rules)
[pacheck] addition inference rules 3 (38% of inference

rules)↪→
[pacheck] multiplication inference rules 4 (50% of inference

rules)↪→
[pacheck] extension rules 1 (12% of inference rules)
[pacheck] deletion inference rules 3 (30% of total rules)
[pacheck] maximum 9 of total 10 terms (90%)
[pacheck] searched 52 terms 81% hits 0.3 average collisions
[pacheck] maximum 2229 bytes allocated (0.0 MB)
[pacheck] maximum resident set size 4481024 bytes (4.3 MB)
[pacheck] process time 0.000 seconds
[pacheck] TARGET CHECKED

Figure 2. Output of PACHECK on the example from Ex. 1.

$ pasteque res.input res.proof res.target
c polys parsed
c ******************
c pac parsed
c spec parsed
c Now checking
s SUCCESSFULL
c
c ***** stats *****
c parsing polys file init (nonGC): 0.000 s = 0.000 s (usr)

0.000 s (sys)↪→
c parsing pac file init (nonGC): 0.000 s = 0.000 s (usr)

0.000 s (sys)↪→
c full init (nonGC): 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time solving (nonGC): 0.000 s = 0.000 s (usr) 0.000 s

(sys)↪→
c time GC: 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time solving(full): 0.000 s
c Overall (nonGC): 0.001 s = 0.001 s (usr) 0.000 s (sys)
c overall GC: 0.000 s = 0.000 s (usr) 0.000 s (sys)
c Overall(full): 0.001 s

Figure 3. Output of PASTÈQUE on the example from Ex. 1.

VI. EVALUATION

In our experiments we used an Intel Xeon E5-2620 v4
CPU at 2.10 GHz (with turbo-mode disabled) with a memory
limit of 128 GB. The time is listed in rounded seconds (wall-
clock time). We measure the wall-clock time from starting
the tools until they are finished. In our experiments we aim
to highlight the benefits of the new proof format and provide
a comprehensive comparison between our two tools. Source
code, benchmarks and experimental data are available [25].

For the experiments of Table I we generated PAC proofs as in
previous work [9], [22] to validate the correctness of multipliers
with input bit-width n. The circuits are either generated with
AMG [38], BOOLECTOR [39] or GENMUL [40].

For the upper part of Table I we generated proof certificates
with AMULET [9] to validate the correctness of simple
multiplier circuits [9]. We modified AMULET to generate
proofs in our new PAC format.

Our previous approach [9] to tackle complex multipliers
also relies on SAT solving. We substitute complex final-stage
adders in multipliers by simple ripple-carry adders. A bit-level
miter is generated, which is passed on to a SAT solver to verify
the equivalence of the adders. Computer algebra techniques
are used to verify the rewritten multiplier. Since two different
solving techniques are used, two proof certificates in distinct
formats are generated. SAT solvers generate a DRUP proof and
computer algebra techniques produce a PAC proof. In order to
obtain a single proof certificate we translate DRUP proofs into
PAC [22]. In the experiments of [22] all gate constraints of
the given multiplier, the equivalent ripple-carry adder, and the
bit-level miter are assumed as initial set of constraints G. We
even added polynomials that define Boolean negation to the
initial constraint set (cf. Sect. II-A). All these polynomials are
now added using extension rules. This preserves the models
of the gate constraints of the given multiplier. Experiments for
these proof certificates are shown in the lower part of Table I.
The second column shows the input bit-width, the third column
shows the number of generated proof steps and the fourth the
highest degree of the polynomials.

Table I
PROOF CHECKING (IN BOLD THE FASTEST VERSION)

multiplier n steps deg
PACTRIM PACHECK PASTÈQUE

no delete no index default default uloop

(106) sec MB sec MB sec MB sec MB sec MB sec MB
btor 128 0.4 3 10 105 5 273 11 100 5 92 22 3 886 17 1 773
btor 256 1.6 3 60 459 25 1 144 62 435 25 364 105 21 157 79 4 364
btor 512 6.3 3 395 2 066 138 4 956 402 1 972 141 1 461 531 64 412 416 22 292
sp-ar-rc 128 0.6 4 16 156 6 454 16 148 6 136 31 5 002 23 1 608
sp-ar-rc 256 2.3 4 92 687 29 1 858 96 651 27 541 139 32 525 102 8 769
sp-ar-rc 512 9.4 4 587 3 107 146 7 683 617 2 965 134 2 171 608 64 412 471 25 632
sp-ar-cl 32 1.6 256 31 405 23 773 36 354 21 353 121 40 654 113 9 492
sp-dt-lf 32 0.3 46 3 82 2 122 3 73 2 73 11 1 679 11 886
bp-ct-bk 32 0.2 25 2 57 1 86 2 52 1 51 8 1 600 7 1 068
bp-wt-cl 32 5.6 764 242 1 716 193 4 324 302 1 430 181 1 428 786 58 867 774 64 404

The columns PACTRIM show the time and memory usage of
our previous proof checker PACTRIM. For that we reproduce
proofs of [9], [22] in the original PAC format. These proofs
are also used in the column “no index” to show the backward
compatibility of PACHECK. It can be seen that PACTRIM and
PACHECK behave similar on the original PAC format.

The effect of deletion rules and indices in PACHECK can also
be seen in Table I. Deletion rules reduce the memory usage by
at least a factor two, although the effect on runtime is limited.
Using indices reduces the runtime by 30 to 80%. Note that in
our earlier experiments [22] the proof checking time is slightly
faster than in the column “no index”, because we did not use
proper extension rules, which requires the additional checks
p ∈ Z[X]/〈B(X)〉 and p2 − p ≡ 0 mod 〈B(X)〉.

Furthermore, we can compare the performance of PACHECK
and PASTÈQUE. The memory usage for PASTÈQUE depends
on the garbage collector, which likely explains the peak around
64 GB (half of the available memory). The verified checker
PASTÈQUE is less efficient. It is both much slower and
more memory hungry. Verified checkers of SAT certificates
[41], [42] have the same level of efficiency as state-of-the-art
checkers [43], likely because of the imperative style (unlike
our pure functional code) and the more efficient memory usage
by managing most memory directly (e.g., for clauses) instead
of relying on the garbage collector.

VII. CONCLUSION AND FUTURE WORK

We presented our proof checkers PACHECK and PASTÈQUE
which are able to check PAC proofs efficiently. Our new proof
format includes an extension rule, which is able to capture
rewriting techniques. Furthermore, we added a deletion rule
and used indices for polynomials. Our experiments showed that
these optimizations cut memory usage in half and reduce the
runtime by around 30–80%. PACHECK was four times faster
than PASTÈQUE and used an order of magnitude less memory,
whereas PASTÈQUE was formally verified in Isabelle.

In the future we want to capture more general extension rules
in PAC as the calculus from Section II allows. We imagine
that it can be extended in two ways. First, we could relax the
condition p2 = p. This condition is necessary to have v2 = v,

but could be lifted even if it means that vn cannot be simplified
to v anymore, requiring to manipulate exponents. Second, we
currently restrict the extension to the form v = p where p
contains no new variables. The correctness theorem does not
rely on that and we leave it as future work to determine whether
lifting one of these restrictions can lead to shorter proofs.

In the newest version of our tools [9] no redundant proof
steps are generated, hence no backward proof checking is nec-
essary unlike SAT certificates. This might still be interesting
in other applications. Another idea for future work is to bridge
the gap between C and Isabelle, either by imperative code or
by verifying the C code directly.

Acknowledgement: This work is supported by Austrian Science
Fund (FWF), NFN S11408-N23 (RiSE), and LIT AI Lab funded by the State
of Upper Austria.

REFERENCES

[1] M. J. H. Heule and A. Biere, “Proofs for satisfiability problems,” in All
about Proofs, Proofs for All, vol. 55, 2015, pp. 1–22.

[2] A. Van Gelder, “Verifying RUP proofs of propositional unsatisfiability,”
in ISAIM, 2008.

[3] ——, “Producing and verifying extremely large propositional refutations
– have your cake and eat it too,” Ann. Math. Artif. Intell., vol. 65, no. 4,
pp. 329–372, 2012.

[4] M. J. H. Heule, W. A. Hunt, Jr., and N. Wetzler, “Trimming
while checking clausal proofs,” in Formal Methods in Computer-Aided
Design, FMCAD 2013. IEEE, 2013, pp. 181–188. [Online]. Available:
http://ieeexplore.ieee.org/document/6679408/

[5] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, Jr., M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in CADE 26,
ser. LNCS, L. de Moura, Ed., vol. 10395. Springer, 2017, pp. 220–236.

[6] D. Kapur, “Geometry theorem proving using Hilbert’s Nullstellensatz,”
in SYMSAC. ACM, 1986, pp. 202–208.

[7] ——, “Using Gröbner bases to reason about geometry problems,” J.
Symb. Comput., vol. 2, no. 4, pp. 399–408, 1986.

[8] D. Kapur and P. Narendran, “An equational approach to theorem proving
in first-order predicate calculus,” in IJCAI. Morgan Kaufmann, 1985,
pp. 1146–1153.

[9] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD 2019. IEEE, 2019,
pp. 28–36.

[10] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using reverse
engineering to bring light into backward rewriting for big and dirty
multipliers,” in DAC. ACM, 2019, pp. 185:1–185:6.

[11] M. J. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding algebraic
rewriting for arithmetic circuit verification: a bit-flow model,” IEEE
TCAD, pp. 1–1, 2019.

http://ieeexplore.ieee.org/document/6679408/

[12] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE 2020.
IEEE, 2020, pp. 544–549.

[13] C. Bright, I. Kotsireas, and V. Ganesh, “Applying computer algebra
systems and SAT solvers to the Williamson conjecture,” Journal of
Symbolic Computation, 04 2018.

[14] M. J. H. Heule, “Computing small unit-distance graphs with chromatic
number 5,” CoRR, vol. abs/1805.12181, 2018.

[15] M. J. H. Heule, M. Kauers, and M. Seidl, “Local search for fast matrix
multiplication,” in SAT 2019, ser. LNCS, vol. 11628. Springer, 2019,
pp. 155–163.

[16] ——, “New ways to multiply 3 × 3-matrices,” CoRR, vol.
abs/1905.10192, 2019.

[17] C. Condrat and P. Kalla, “A gröbner basis approach to cnf-formulae
preprocessing,” in TACAS 2007, ser. LNCS, vol. 4424. Springer, 2007,
pp. 618–631.

[18] M. Soos and K. S. Meel, “BIRD: engineering an efficient CNF-XOR
SAT solver and its applications to approximate model counting,” in AAAI
2019. AAAI Press, 2019, pp. 1592–1599.

[19] D. Choo, M. Soos, K. M. A. Chai, and K. S. Meel, “Bosphorus:
Bridging ANF and CNF solvers,” in DATE 2019, J. Teich and F. Fummi,
Eds. IEEE, 2019, pp. 468–473.

[20] D. Ritirc, A. Biere, and M. Kauers, “A practical polynomial calculus for
arithmetic circuit verification,” in SC2’18, A. Bigatti and M. Brain, Eds.
CEUR-WS, 2018, pp. 61–76.

[21] M. Clegg, J. Edmonds, and R. Impagliazzo, “Using the Groebner basis
algorithm to find proofs of unsatisfiability,” in STOC. ACM, 1996, pp.
174–183.

[22] D. Kaufmann, A. Biere, and M. Kauers, “From DRUP to PAC and
back,” in DATE 2020. IEEE, 2020, pp. 654–657. [Online]. Available:
http://fmv.jku.at/drup2pac/

[23] D. Kaufmann, “Formal verification of multiplier circuits using computer
algebra,” Ph.D. dissertation, Informatik, Johannes Kepler University
Linz, 2020.

[24] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms.
Springer-Verlag New York, 1997.

[25] D. Kaufmann and M. Fleury, “The PAC checkers Pacheck and Pastèque,”
accessed: 2020-05-06. [Online]. Available: http://fmv.jku.at/pacheck
pasteque

[26] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
“Space complexity in propositional calculus,” SIAM J. Comput., vol. 31,
no. 4, pp. 1184–1211, 2002.

[27] B. Buchberger, “Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal,” Ph.D.
dissertation, University of Innsbruck, 1965.

[28] D. Lichtblau, “Effective computation of strong Gröbner bases over
Euclidean domains,” Illinois Journal of Mathematics, vol. 56, 11 2013.

[29] T. Granlund et al., “GNU Multiple Precision Arithmetic Library,”
January 2020. [Online]. Available: http://gmplib.org/

[30] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer, 2002, vol.
2283.

[31] P. Lammich, “Refinement based verification of imperative data structures,”
in CPP 2016, J. Avigad and A. Chlipala, Eds. ACM Press, 2016, pp.
27–36.

[32] F. Haftmann and T. Nipkow, “Code generation via higher-order rewrite
systems,” in FLOPS 2010, ser. LNCS, M. Blume, N. Kobayashi, and
G. Vidal, Eds., vol. 6009. Springer, 2010, pp. 103–117.

[33] M. Fleury and D. Kaufmann, “Isabelle pac formalization,” theory files
at https://bitbucket.org/isafol/isafol/src/master/PAC/, Accessed: 2020-05-
06. [Online]. Available: http://people.mpi-inf.mpg.de/∼mfleury/IsaFoL/
current/PAC Checker/PAC Checker/index.html

[34] J. C. Blanchette, S. Böhme, M. Fleury, S. J. Smolka, and A. Stecker-
meier, “Semi-intelligible Isar proofs from machine-generated proofs,” J.
Autom. Reasoning, vol. 56, no. 2, pp. 155–200, 2016.

[35] P. Lammich, “Refinement to Imperative/HOL,” in ITP 2015, ser. LNCS,
C. Urban and X. Zhang, Eds., vol. 9236. Springer, 2015, pp. 253–269.

[36] S. Weeks, “Whole-program compilation in MLton,” in Proceedings of
the ACM Workshop on ML, 2006, Portland, Oregon, USA, September
16, 2006. ACM Press, 2006, p. 1.

[37] P. Lammich, “Generating verified LLVM from Isabelle/HOL,” in ITP
2019, A. Tolmach, J. Harrison, and J. O’Leary, Eds., 2019.

[38] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Formal design
of arithmetic circuits based on arithmetic description language,” IEICE
Transactions, vol. 89-A, no. 12, pp. 3500–3509, 2006.

[39] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “BTOR2 , BtorMC and
Boolector 3.0,” in CAV, ser. LNCS, vol. 10981. Springer, 2018, pp.
587–595.

[40] A. Mahzoon, D. Große, and R. Drechsler, “Multiplier generator GenMul,”
http://www.sca-verification.org/, 2019.

[41] P. Lammich, “The GRAT tool chain - efficient (UN)SAT certificate
checking with formal correctness guarantees,” in SAT, ser. LNCS, vol.
10491. Springer, 2017, pp. 457–463.

[42] M. J. H. Heule, W. A. Hunt, Jr., M. Kaufmann, and N. Wetzler,
“Efficient, verified checking of propositional proofs,” in ITP, ser. LNCS,
vol. 10499. Springer, 2017, pp. 269–284.

[43] A. Rebola-Pardo and J. Altmanninger, “Frying the egg, roasting the
chicken: Unit deletions in DRAT proofs,” in CPP, J. Blanchette and
C. Hritcu, Eds. ACM, 2020.

http://fmv.jku.at/drup2pac/
http://fmv.jku.at/pacheck_pasteque
http://fmv.jku.at/pacheck_pasteque
http://gmplib.org/
https://bitbucket.org/isafol/isafol/src/master/PAC/
http://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/PAC_Checker/PAC_Checker/index.html
http://people.mpi-inf.mpg.de/~mfleury/IsaFoL/current/PAC_Checker/PAC_Checker/index.html
http://www.sca-verification.org/

2

a[0]

4

b[0]

6

a[1]

8

b[1]

10 1214

1618

20

22

2426

28

s[0]

s[1]

s[2]

s[3]

Index Polynomial equation Gate constraint
1 −s3 + l24 s3 = l24
2 −s2 + l28 s2 = l28
3 −l28 + l26l24 − l26 − l24 + 1 l28 = ¬l26 ∧ ¬l24
4 −l26 + l22l16 − l22 − l16 + 1 l26 = ¬l22 ∧ ¬l16
5 −l24 + l22l16 l24 = l22 ∧ l16
6 −l22 + b1a1 l22 = b1 ∧ a1

7 −s1 + l20 s1 = l20
8 −l20 + l18l16 − l18 − l16 + 1 l20 = ¬l18 ∧ ¬l16
9 −l18 + l14l12 − l14 − l12 + 1 l18 = ¬l14 ∧ ¬l12

10 −l16 + l14l12 l16 = l14 ∧ l12
11 −l14 + b1a0 l14 = b1 ∧ a0

12 −l12 + b0a1 l12 = b0 ∧ a1

13 −s0 + l10 s0 = l10
14 −l10 + b0a0 l10 = b0 ∧ a0

Figure 4. AIG of a simple 2 bit multiplier (left) with corresponding polynomial equations (right).

APPENDIX

We present an example on how to generate PAC proofs as
a by-product of circuit verification.

Example 2. In this example we present how PAC proofs are
generated as a by-product of multiplier verification. Figure 4
shows an And-Inverter-Graph (AIG) of a simple 2-bit multiplier.
Nodes in the AIG represent logical conjunction and markings
on the edges represent negation. For each node we introduce
a corresponding polynomial equation, such that the Boolean
roots of the polynomial are the solutions of the gate constraints
and vice versa. For example from l26 = ¬l16 ∧¬l22 we derive
the polynomial equation −l26 + l16l22 − l16 − l22 + 1 = 0.
These polynomials are shown on the right side of Fig. 4 and
define the initial constraint set.

The multiplier is correct if we derive that the gate constraints
imply the specification −8s3 − 4s2 − 2s1 − s0 + 4a1b1 +
2a0b1 + 2a0b1 + a0b0 = 0. We apply backward rewriting
of the specification to check whether the multiplier is correct.
We refer to [9] for more details on the reduction process.

The corresponding rewriting steps can be seen in Fig. 5,
where we show how the corresponding PAC proof is generated
on the fly. The left column “Remainder” shows the current
remainder during multiplier verification. Initially the remain-
der is set to the specification polynomial of the multiplier. The
second column depicts the index of the gate constraint that is
used in the current reduction step. For example in the first
row we reduce the specification by the polynomial with index 1
i.e., using multivariate polynomial division with remainder we
calculate 8s3+4s2+2s1+s0−4a1b1−2a0b1−2a0b1−a0b0−
8(−s3 + l24) = −4s2 − 8l24 − 2s1 − s0 + 4b1a1 + 2b1a0 +
2b0a1 + b0a0. We generate a PAC rule for the subtrahend
−8(−s3 + l24) and the difference becomes the new remainder.
We continue polynomial reduction until completion and check
whether the final remainder is equal to zero. Subsequently we
generate PAC rules to add up the conclusion polynomials of the
multiplication rules that were generated for the subtrahends.
The result of the last proof rule matches the circuit specification.

Remainder Red. PAC rules

−8s3 − 4s2 − 2s1 − s0 + 4a1b1 + 2a0b1 + 2a0b1 + a0b0 1 15 ∗ 1, 8,−8s3 + 8l24;

−4s2 − 8l24 − 2s1 − s0 + 4b1a1 + 2b1a0 + 2b0a1 + b0a0 2 16 ∗ 2, 4,−4s2 + 4l28;

−4l28 − 8l24 − 2s1 − s0 + 4b1a1 + 2b1a0 + 2b0a1 + b0a0 3 17 ∗ 3, 4,−4l28 + 4l26l24 − 4l26 − 4l24 + 4;

−4l26l24 + 4l26 − 4l24 − 2s1 − s0 + 4b1a1 + 2b1a0+
2b0a1 + b0a0 − 4 4

18 ∗ 4, 4l24 − 4,−4l26l24 + 4l26 + 4l24l22l16−
4l24l22 − 4l24l16 + 4l24 − 4l22l16 + 4l22 + 4l16 − 4;

−4l24l22l16 + 4l24l22 + 4l24l16 − 8l24 + 4l22l16 − 4l22−
2s1 − 4l16 − s0 + 4b1a1 + 2b1a0 + 2b0a1 + b0a0 5

19 ∗ 5, 4l22l16 − 4l22 − 4l16 + 8,−4l24l22l16 + 4l24l22+
4l24l16 − 8l24 + 4l22l16;

−4l22 − 2s1 − 4l16 − s0 + 4b1a1 + 2b1a0 + 2b0a1 + b0a0 6 20 ∗ 6, 4,−4l22 + 4b1a1;

−2s1 − 4l16 − s0 + 2b1a0 + 2b0a1 + b0a0 7 21 ∗ 7, 2,−2s1 + 2l20;

−2l20 − 4l16 − s0 + 2b1a0 + 2b0a1 + b0a0 8 22 ∗ 8, 2,−2l20 + 2l18l16 − 2l18 − 2l16 + 2;

−2l18l16 + 2l18 − 2l16 − s0 + 2b1a0 + 2b0a1 + b0a0 − 2 9
23 ∗ 9, 2l16 − 2,−2l18l16 + 2l18 + 2l16l14l12 − 2l16l14 − 2l16l12+
2l16 − 2l14l12 + 2l14 + 2l12 − 2;

−2l16l14l12 + 2l16l14 + 2l16l12 − 4l16 + 2l14l12 − 2l14−
2l12 − s0 + 2b1a0 + 2b0a1 + b0a0 10

24 ∗ 10, 2l14l12 − 2l14 − 2l12 + 4,−2l16l14l12 + 2l16l14 + 2l16l12−
4l16 + 2l14l12;

−2l14 − 2l12 − s0 + 2b1a0 + 2b0a1 + b0a0 11 25 ∗ 11, 2,−2l14 + 2b1a0;

−2l12 − s0 + 2b0a1 + b0a0 12 26 ∗ 12, 2,−2l12 + 2b0a1;

−s0 + b0a0 13 27 ∗ 13,−1, s0 − l10;

−l10 + b0a0 14 28 ∗ 14,−1, l10 − b0a0;

0 29 + 16, 17,−4s2 + 4l26l24 − 4l26 − 4l24 + 4;

30 + 18, 19,−4l26l24 + 4l26 − 4l24 + 4l22 + 4l16 − 4;

31 + 29, 30,−4s2 − 8l24 + 4l22 + 4l16;

32 + 32, 22,−4s2 − 8l24 + 4l16 + 4b1a1;

33 + 21, 22,−2s1 + 2l18l16 − 2l18 − 2l16 + 2;

34 + 23, 24,−2l18l16 + 2l18 − 2l16 + 2l14 + 2l12 − 2;

35 + 25, 26,−2l14 − 2l12 + 2b1a0 + 2b0a1;

36 + 33, 34,−2s1 − 4l16 + 2l14 + 2l12;

37 + 36, 35,−2s1 − 4l16 + 2b1a0 + 2b0a1;

38 + 27, 28,−s0 + b0a0;

39 + 15, 32,−8s3 − 4s2 + 4l16 + 4b1a1;

40 + 37, 38,−2s1 − 4l16 − s0 + 2b1a0 + 2b0a1 + b0a0;

41 + 39, 40,−8s3 − 4s2 − 2s1 − s0 + 4b1a1 + 2b1a0 + 2b0a1 + b0a0;

Figure 5. Generating PAC rules during multiplier verification.

	I Introduction
	II Practical Algebraic Calculus
	II-A Extension

	III Pacheck
	IV Pastèque
	V Tool Demonstration
	VI Evaluation
	VII Conclusion and Future Work
	References
	Appendix

