
Nullstellensatz-Proofs for Multiplier Verification

Daniela Kaufmann, Armin Biere?

Johannes Kepler University, Linz, Austria

Abstract. Automated reasoning techniques based on computer algebra
are an essential ingredient in formal verification of gate-level multiplier
circuits. Generating and independently checking proof certificates helps
to validate the verification results. Two algebraic proof systems, Null-
stellensatz and polynomial calculus, are well-known in proof complexity.
The practical application of the polynomial calculus has been studied
recently. However, producing and checking Nullstellensatz certificates
for multiplier verification has not been considered so far. In this paper
we show how Nullstellensatz proofs can be generated as a by-product
of multiplier verification and present our Nullstellensatz proof checker
Nuss-Checker. Additionally, we prove quadratic upper bounds on the
proof size for simple array multipliers.

1 Introduction

Formal verification aims to prove or disprove the correctness of a given system
with respect to a certain specification. Nonetheless, the verification process
might not be correct and contain errors. Thus it is common to produce proof
certificates, which can be checked by stand-alone proof checkers in order to
increase the confidence in the results of the verification process.

For example, many applications of formal verification use satisfiability (SAT)
solving and various resolution or clausal proof formats [17], such as DRUP [13,14],
DRAT [18], and LRAT [11] are available to validate the verification results. In
the annual SAT competition it is even required to provide certificates since 2013.

However, in certain applications SAT solving cannot be applied successfully.
For instance formal verification of arithmetic circuits, more precisely multiplier
circuits is considered to be hard for SAT solving. The current state of the art
in verifying multiplier circuits relies on computer algebra [9, 24, 31, 32]. In this
approach the circuit is modeled as a set of polynomials and it is shown that the
specification, also encoded as a polynomial, is implied by the polynomials that
are induced by the circuit. That is, for each gate in the circuit a polynomial is
defined that captures the relations of the inputs and output of the gate. These
gate polynomials generate a Gröbner basis [7]. Preprocessing techniques based
on variable elimination are applied to rewrite and thus simplify the Gröbner
basis [24, 31]. After preprocessing the specification polynomial is reduced by
the rewritten gate polynomials until no further reduction is possible. The given
multiplier is correct if and only if the final result is zero.

? This work is supported by the LIT AI Lab funded by the State of Upper Austria.



Besides circuit verification, algebraic reasoning in combination with SAT solv-
ing [6] is successfully used to solve complex combinatorial problems, e.g., finding
faster ways for matrix multiplication [19, 20], computing small unit-distance
graphs with chromatic number 5 [16], or solving the Williamson conjecture [5],
and has possible future applications in cryptanalysis [8,40]. All these applications
raise the need to invoke algebraic proof systems for proof validation.

Two algebraic proof systems are commonly known in the proof complexity
community, polynomial calculus (PC) [10] and Nullstellensatz (NSS) [3]. Both
systems are well-studied, with the main focus on deriving complexity measures,
such as degree and proof size, e.g., [2,22,33,34]. Proofs in PC allow us to dynam-
ically capture that a polynomial can be derived from a given set of polynomials
using algebraic ideal theory. However, PC as defined in [10], is not suitable for
practical proof checking [23], thus we introduced the practical algebraic calcu-
lus (PAC) in [37] that can be checked efficiently.

Proofs in NSS capture whether a polynomial can be represented as a linear
combination from a given set of polynomials. Since NSS proofs are more static we
made the following conjecture for the application of multiplier circuit verification
in [23]: “In a correct NSS proof we would also need to express the rewritten
polynomials as a linear combination of the given set of polynomials and thus
lose the optimized representation, which will most likely lead to an exponential
blow-up of monomials in the NSS proof.”

In this paper we show that this conjecture has to be rejected, at least for those
multiplier architectures considered in this paper. We introduce how NSS proofs
can be produced in our verification tool AMulet [24, 26] and our experimental
results demonstrate that we are able to generate concise NSS proofs. For simple
array multipliers, which consist only of full- and half-adders that are arranged in
a grid-like structure, we prove quadratic bounds for the proof size. Furthermore,
we present our NSS proof checker Nuss-Checker and discuss important design
decisions that help to improve the checking time and memory usage.

2 Preliminaries

We describe our state-of-the-art approach in gate-level multiplier verification
using computer algebra [24], and give an introduction to the algebraic proof
systems PC, PAC, and NSS.

2.1 Multiplier Verification

Digital circuits are used in computers and digital systems and compute binary
digital values for the logical function they implement, given binary values at the
input. The computation is usually realized by logic gates, representing simple
Boolean functions, such as NOT, AND, OR. The specification of a circuit is a
desired relation between its inputs and outputs and the goal of verification is
to formally prove that the circuit fulfills its specification, i.e., for all inputs the
outputs of the circuit match the specification.



v w

u

u = v ∧ w

−u + vw

v w

u

u = v ∧ ¬w
−u− vw + v

v w

u

u = ¬v ∧ ¬w
−u + vw − v − w + 1

Fig. 1: All polynomial encodings covered by AIG nodes.

In our setting, we consider gate-level integer multiplier circuits C with 2n input
bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈ {0, 1}.
The internal gates are denoted by g1, . . . , gk ∈ {0, 1}. Let R be a commutative
ring with unity and let R[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1] =
R[X]. Since we consider integer multipliers, we will later set the ring R = Z, but
for now let us keep the more general ring R. The multiplier C is correct iff for
all possible inputs ai, bi ∈ {0, 1} the following specification L = 0 holds:

L = −
2n−1∑
i=0

2isi +

(n−1∑
i=0

2iai

)(n−1∑
i=0

2ibi

)
(1)

A common representation of circuits are And-Inverter-Graphs (AIG) [28],
which are directed acyclic graphs consisting of two-input nodes that represent
logical conjunction. The edges may contain a marking that indicates logical
negation. The semantics of each node implies a polynomial relation, cf. Fig. 1.

Let G(C) ⊆ R[X] be the set of polynomials that contains for each gate of the
given circuit C the corresponding polynomial of Fig. 1, with u, v, and w replaced
by corresponding variables x ∈ X. We call these polynomials gate constraints.

All variables x ∈ X are Boolean and we enforce this property by adding for
each variable a Boolean value constraint x(x− 1) = 0. Let B(Y ) = {y(1− y) |
y ∈ Y } ⊆ R[X] for Y ⊆ X, be the set of Boolean value constraints for Y .

On the set of terms we fix an order ≤ such that for all terms τ, σ1, σ2 it holds
that 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. An order is called a lexicographic term
order if for all terms σ1 = xd1

1 · · ·xdr
r , σ2 = xe11 · · ·xerr we have σ1 < σ2 iff ∃i ∈ N

with dj = ej for all j < i, and di < ei. For a polynomial p = cτ + · · · the largest
term τ (w.r.t. ≤) is called the leading term lt(p) = τ . Furthermore lc(p) = c is
called the leading coefficient and lm(p) = cτ is called the leading monomial of p.

Definition 1 ([24]). Let P ⊆ R[X]. If for a term order, all leading terms
of P only consist of a single variable with exponent 1, are unique, and further
lc(p) ∈ R× for all p ∈ P , we say P has unique monic leading terms (UMLT).

We order the polynomials in G(C) according to a lexicographic term order,
such that the output variable of a gate is always greater than the inputs of the gate.
Such an order is also called reverse topological term order [29]. It immediately
follows that G(C) has UMLT. Let X0 ⊆ X be the set of all variables that do not
occur as leading terms in G(C) and let J(C) = 〈G(C) ∪B(X0)〉 ⊆ R[X]. The
circuit fulfills its specification if and only if we can derive that L ∈ J(C) [24].



For the remainder of this section let R = Z. Because of the UMLT property
of the gate polynomials, G(C)∪B(X0) defines a D-Gröbner basis [4] for J(C) ⊆
Z[X] [24]. We further showed in [24] that J(C) = 〈G(C) ∪B(X)〉 ⊆ Z[X], i.e.,
J(C) contains all Boolean value constraints for x ∈ X. Thus the correctness
of the circuit can be established by reducing L by the gate polynomials and all
Boolean value constraints and checking whether the result is zero.

It was shown in [30] that simply reducing the specification by G(C) ∪B(X)
leads to large intermediate reduction results. Thus, we developed preprocessing
techniques based on variable elimination [24]. Typical components in multipliers
are full- and half-adders, which are used to add three resp. two bits and produce
a two-bit output c, s. The specification is −2c− s+x+ y+ z = 0 for a full-adder
and −2c−s+x+y = 0 for a half-adder, with x, y, z representing the inputs. We
include these specifications in the D-Gröbner basis by eliminating the internal
variables of the full- and half-adders in C. After preprocessing L is reduced by
the rewritten D-Gröbner basis G(C)′ until completion.

However, parts of the multiplier, more precisely final stage adders that are
generate-and-propagate (GP) adders [36], are hard to verify using computer
algebra. Contrarily, equivalence checking of adder circuits is easy for SAT solv-
ing. Hence, we combine SAT solving and computer algebra and our verification
tool AMulet automatically replaces the complex GP adders by simple ripple-
carry adders [24]. The correctness of the replacement is verified by SAT solvers
and the rewritten multiplier is verified using computer algebra techniques. We
generate DRUP proofs in SAT solvers and PAC proofs in AMulet. These
proofs can be merged into one single PAC proof [25].

2.2 Algebraic proof systems

In the following we introduce algebraic proof formats, which are able to generate
proof certificates using algebraic reasoning methods. Algebraic proof systems
typically reason over polynomials in K[X], where K is a field and the variables X
represent Boolean values. The aim of an algebraic proof is to derive whether a
polynomial f can be derived from a given set of polynomials G = {g1, . . . , gl} ⊆
K[X] together with the Boolean value constraints B(X) = {x2i − xi | xi ∈ X}.
In algebraic terms this means to show that the polynomial f ∈ 〈G ∪B(X)〉.

The first proof system we consider is the polynomial calculus (PC) [10]. A
proof in PC is a sequence of proof rules P = (p1, . . . , pm), with pi ∈ K[X] and
pm = f . Each rule has the following form that model the properties of an ideal:

Axiom
p

p ∈ G ∪B(X)

Addition
p q

p+ q
p, q both appear in P

Multiplication
p

qp
p appears earlier in P , q ∈ K[X]



The following metrics for PC are common in proof complexity, e.g. in [22,34]:

Definition 2. Let deg(p) be the degree of a polynomial p. The degree of a PC
proof P is the maximum degree of any proof rule pi, i.e., deg(P ) = max{deg(pi)}.

Definition 3. The length of a PC proof P is defined as the maximum number
of proof rules, i.e. length(P ) = m.

Definition 4. Let msize(p) denote the number of monomials in a polynomial p.
The size of a PC proof P is the number of monomials in all proof rules pi, i.e.,

size(P ) =

m∑
i=1

msize(pi).

However, PC proofs cannot be checked efficiently, as the sequence of proof
rules only contains the conclusion polynomials of each proof rule. Thus we
modified PC in [23,37] and extended PC by adding information on the derivation
of each pi, yielding the practical polynomial algebraic calculus (PAC).

Furthermore, in our application with G = G(C), all polynomials in G have
UMLT. Thus we were able to generalize the soundness and completeness argu-
ments of PC to polynomial rings R[X] over commutative rings R with unity [24],
thus also to Z[X]. Additionally, we treat the Boolean value constraints implicitly,
i.e., we consider proofs in the ring Z[X]/〈B(X)〉 to admit shorter proofs [23,27]..

The metrics degree, length, and size can be directly applied to PAC proofs.
PAC proofs can be checked using our proof checkers Pacheck or Pastèque [23,
27]. The proof checkers read the given set of polynomials G∪B(X) and verify the
correctness of each proof line by checking whether the necessary conditions are
fulfilled. We furthermore check whether it holds for one proof rule that pi = f .

The Nullstellensatz proof system [3] derives whether a polynomial f ∈ K[X]
can be represented as a linear combination from a given set of polynomials
G = {g1, . . . , gl} ⊆ K[X] and the Boolean value constraints B(X). That is, an
NSS proof for a given polynomial f and a set of polynomials G is an equality

l∑
i=1

higi +
∑
xj∈X

rj(x
2
j − xj) = f, for hi, rj ∈ K[X]. (2)

By the same arguments given for PAC [24], we are able to generalize the
soundness and completeness arguments of NSS proofs to rings R[X] for our
application where G = G(C) has UMLT. We consider R = Z and again treat the
Boolean value constraints implicitly to yield shorter proofs. Thus, the NSS proof
we consider for a given polynomial f ∈ Z[X]/〈B(X)〉 and a set of polynomials
G = {g1, . . . , gl} ⊆ Z[X]/〈B(X)〉 is an equality P , such that

l∑
i=1

higi = f ∈ Z[X]/〈B(X)〉, (3)

with hi ∈ Z[X]/〈B(X)〉. We call gi the base of the NSS proof and hi co-factors.



The following metrics for NSS are common in proof complexity, e.g. in [1,15]:

Definition 5. The degree of an NSS proof P is max{deg(higi)}.

Definition 6. The size of an NSS proof P is given as

size(P ) =

l∑
i=0

msize(hi) msize(gi).

A further metric is the representation size that measures the total number of
monomials in the polynomials gi and the co-factors hi. As the name indicates,
it estimates the number of monomials needed to write down an NSS proof.

Definition 7. The representation size of an NSS proof P is given as

repsize(P ) =
l∑

i=0

(msize(hi) + msize(gi)).

Checking NSS proofs seems straightforward as we simply need to expand the
products higi, calculate the sum, and compare the derived polynomial to the
given target polynomial f . However, we discuss practical issues of proof checking
in Sect. 5, where we introduce our proof checker Nuss-Checker.

3 Proof Generation

In this section we discuss how NSS proofs can be generated in our verification tool
AMulet [24]. We introduced in Sect. 2 that we distinguish two phases during
verification of multipliers. In the preprocessing step we eliminate variables from
the induced D-Gröbner basis G(C) to gain a simpler polynomial representation
G(C)′. In the second step the specification is reduced by the rewritten D-Gröbner
basis G(C)′ to determine whether the given circuit is correct. Both phases have
to be included in the NSS proof to yield a representation of the specification L
as a linear combination of the original gate constraints G(C) ∈ Z[X]/〈B(X)〉.

AMulet reads the given AIG, determines a reverse topological term ordering
and encodes each AIG node by a corresponding polynomial to derive the set of
gate constraints G(C). All polynomials from G(C) are kept in the memory even
if they are removed from the D-Gröbner basis during preprocessing.

In the preprocessing step, we repeatedly eliminate all variables v ∈ X \X0

from G(C) that occur in the tail of only one polynomial, cf. Sect. 4.2. in [26].
Let pv ∈ G(C) such that lt(pv) = v. Since G(C) has UMLT and v /∈ X0, such
a pv exists. All polynomials p ∈ G(C) \ {p}, with v ∈ p are reduced by pv to
remove v from p. The reduction algorithm is depicted in Alg. 1 and returns
polynomials h, r ∈ Z[X]/〈B(X)〉 such that p + hpv = r ∈ Z[X]/〈B(X)〉. In
contrast to more general polynomial division/reduction algorithms we use the
fact in Alg. 1 that lm(pv) = −v.

We replace the polynomial p by the calculated remainder r, and remove pv
from the D-Gröbner basis [24]. To keep track of the rewriting steps we want to
store information on the derivation of the rewritten polynomials r.



Algorithm 1: Reduction(p, pv, v)

Input :Polynomials p, pv ∈ Z[X]/〈B(X)〉, lm(pv) = −v
Output :Polynomials h, r ∈ Z[X]/〈B(X)〉 such that p + hpv = r

1 t← p, r ← p, h← 0;
2 while t 6= 0 do
3 if v ∈ lt(t) then
4 h = h + lm(t)/v;
5 r = r + pv lm(t)/v mod 〈B(X)〉;
6 t = t− lm(t);

7 return h, r

Algorithm 2: Add-to-basis-representation(pv, h,base(r))

Input :Polynomials pv, h ∈ Z[X]/〈B(X)〉, basis representation base(r)
Output :Updated basis representation base(r) such that (pv, h) is included

1 if pv → orig then
2 if (pv, hi) ∈ base(r) for any hi then
3 base(r)← (base(r) \ {(pv, hi)}) ∪ {(pv, hi + h)};
4 else
5 base(r)← base(r) ∪ {(pv, h)};
6 else
7 foreach (p′i, h

′
i) ∈ base(pv) do Add-to-basis-representation(p′i, hh

′
i);

8 return base(r)

Definition 8. We call base(r) = {(pi, qi) | pi ∈ G(C), qi ∈ Z[X]/〈B(X)〉} the
basis representation of r ∈ Z[X]/〈B(X)〉, such that r =

∑
(pi,qi) ∈base(r) qipi.

For the rewritten polynomial r that is derived by Alg. 1, we have to include
the tuples (p, 1), (pv, h) in the basis representation base(r), cf. Alg. 2. However,
we want to represent r in terms of the original gate constraints G(C) only, thus
we need to take into account whether the polynomial p resp. pv are original gate
constraints or whether they are rewritten, that is base(p) 6= {}.

If pv is an original gate constraint we include the tuple (pv, h) in base(r).
If pv does not occur in any tuple in base(r), we simply add (pv, h) to base(r).
Otherwise base(r) contains a tuple (pv, hi) that has to be updated to (pv, hi +h),
which corresponds to merging common factors in base(r).

If the polynomial pv is not an original gate constraint, base(pv) 6= {}, i.e., pv
can be written as a linear combination pv = h′1p1 + · · ·+ h′lpl for some original
constraints pi and h′i ∈ Z[X]/〈B(X)〉. Thus the tuple (pv, h) corresponds to
hpv = hh′1p1 + · · · + hh′lpl. We traverse through the tuples (pi, h

′
i) ∈ base(pv),

multiply each of the co-factors h′i by h and add the corresponding tuple (pi, hh
′
i) to

base(r). Multiplying and expanding the product hhi may lead to an exponential
blow-up in the size of the NSS proof as the following example shows.

Example 1. Consider a set of polynomials G = {−y1 + (1 + x0)y0,−y2 + (1 +
x1)y1, . . . ,−yk + (1 + xk−1)yk−1} ⊆ Z[y0, . . . yk, x0, . . . xk] and assume we elimi-
nate y1, . . . , yk−1, yielding −yk + (1 +x0)(1 +x1) . . . (1 +xk−1)y0. The expanded
form of the co-factor of y0 contains 2k monomials.



Algorithm 3: Spec-Reduction(L, G(C)′)

Input :Circuit specification L ∈ Z[X], D-Gröbner basis G(C)′

Output :Remainder r, Basis representation base(L)
1 r ← L, base(L)← {};
2 foreach g ∈ G(C)′ do
3 r, h← Reduction(r, g, lt(g));
4 base(L)← Add-to-basis-representation(r, g, h,base(L));

5 return r,base(L)

Surprisingly our experiments, cf. Sect. 6, show that this blow-up does not
occur in arithmetic circuit verification, rejecting our conjecture of [23].

Example 2. We demonstrate a sample run of Alg. 2. Let G(C) = {p1, p2, p3} ⊆
Z[X]/〈B(X)〉 and x, y, z ∈ Z[X]/〈B(X)〉. Assume q1 = p1 + xp2, and q2 =
p3 + yp2. Thus base(q1) = {(p1, 1), (p2, x)} and base(q2) = {(p2, y), (p3, 1)}. Let
p = q1 + zq2. We receive base(p) by adding (q1, 1) and (q2, z) to base(p) = {}.

(q1, 1): Since q1 /∈ G(C), we and add each tuple of base(q1) = {(p1, 1), (p2, x)}
with co-factors multiplied by 1 to base(p). We gain base(p) = {(p1, 1), (p2, x)}.

(q2, z): We consider base(q2) = {(p2, y), (p3, 1)} and add (p2, yz) and (p3, z)
to base(p). Since p3 is not yet contained in the ancestors of p, we directly add
(p3, z) to base(p). The polynomial p2 is already contained in base(p), thus we add
yz to the co-factor x of p2 and we derive base(p) = {(p1, 1), (p2, x+ yz), (p3, z)}.

After preprocessing is completed, we repeatedly apply Alg. 1 and reduce
the specification polynomial L by the rewritten D-Gröbner basis G(C)′. We
consider the polynomials g ∈ G(C)′ in reverse topological order, such that each
polynomial in G(C)′ has to be considered exactly once for reduction. We generate
the final NSS proof by deriving a basis representation for L. Therefore we add
after each reduction step the tuple (g, h), where h is the corresponding co-factor
of polynomial g, to the base representation base(L) using Alg. 2. Algorithm 3
shows the complete reduction process.

We check whether the final remainder r is zero. If so, base(L) represents an
NSS proof and is printed to a file. If r is not zero, r contains only input variables
ai, bi ∈ X0 and can be used to generate counter-examples [23].

4 Proof Size

In this section we examine the proof complexity of the induced NSS proofs in
AMulet for certain multiplier architectures. In particular we are interested in
the degree and proof (representation) size. First, we examine these proof metrics
for btor-multipliers that are generated by Boolector [35]. In this architecture
AND-gates are used to produce the partial products, which are accumulated in an
array structure using full- and half-adders. The final-stage adder is a ripple-carry
adder. These multipliers are considered as “simple” multipliers, because they can
be fully decomposed into full- and half-adders, cf. Fig. 2 for input bit-width 4.
The AIG representation of full- and half-adders is shown in Figs. 3 and 4.



HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p11p20p21p30p31

p02p12p22p32

p03p13p23p33

s′0

c′0

s′1

c′1

s′2

c′2

s′3

c′3

s′4

c′4

s′5

c′5

s′6

c′6

s′7

c′7

s′8

c′8

s′9

c′9

s′10

c′10

s′11

c′11

ai bj

pij

Fig. 2: The architecture of btor-multipliers for input bit-width 4.

In previous work [37] we studied the proof complexity of PAC proofs and
empirically demonstrated that checking commutativity of btor-multipliers induces
PAC proofs of quadratic length and cubic size. However these proofs were
produced using existing computer algebra systems [41] that are not targeted for
multiplier verification. In more recent work [26] we investigated the proof metrics
for PAC proofs that are generated in our verification tool AMulet [24]. We
formally derived that n-bit btor-multipliers generate PAC proofs with degree 3
that have a length of 16n2− 20n− 1 and a proof size (cf. Def. 4) in O(n2 log(n)).

In the following we will investigate the complexity of NSS proofs that are
generated by AMulet for btor-multipliers. We split the gate constraints in
G(C) into three categories: the output polynomials that link an output si to an
output of a full- or half-adder adder, that is −si + s′k or −si − s′k + 1 depending
on the sign of s′k. For example, the multiplier in Fig. 2 induces the output
polynomial −s3 + s′8. Furthermore, we consider polynomials representing partial
products, i.e., −pij + aibj . All remaining polynomials in G(C) are induced from
the full- and half-adders in the circuit, i.e., the internal adder polynomials.

We are able to express the specification of each full- and half-adder, cf. Sect. 2
as a linear combination of the internal adder polynomials. Figure 3 shows the
AIG representing a full-adder, as it occurs in btor-multipliers. Depending on the
position of the full-adder in the multiplier, the sign of the inputs x, y, and z
may be inverted and thus internal variables of the full-adder are negated, which
affects the proof size. The full-adder in Fig. 3 represents the full-adder in btor-
multipliers that yields the largest NSS proofs (input x and output c are inverted).
We use the proof size of these full-adders to estimate an upper bound of the proof
size. The corresponding gate polynomials can be seen on the right side of Fig. 3
together with the co-factors that are induced in AMulet. Expanding the linear
combination yields the specification −2(1 − c) + s + (1 − x) − y − z. Figure 4
shows the same result for a half-adder resulting in −2c − s + x + y. From the
polynomials in Figs. 3 and 4 we are able to derive the following lemmas.



zy

x

g1 g2

g3

g4 g5

s c
gate constraints co-factors
−c + g5g2 − g5 − g2 + 1 −2
−s + g4g5 − g4 − g5 + 1 1
−g4 − g3x + x g5 − 1
−g5 − g3x + g3 g3x− 2g2 + x + 1
−g3 + g1g2 − g1 − g2 + 1 2g2x− 2g2 + 1
−g1 + yz − y − z + 1 g2 − 1
−g2 + yz yz − y − z + 2

Fig. 3: Full-adder architecture in btor-multipliers.

yx

g1 c

s
gate constraints co-factors
−s + g1c− g1 − c + 1 1
−g1 + xy − x− y + 1 c− 1
−c + xy xy − x− y + 2

Fig. 4: Half-adder architecture in btor-multipliers.

Lemma 1. The NSS proof generated in AMulet for a half-adder has maximum
size 61 and maximum representation size 45. The NSS proof for a half-adder
has maximum size 23 and maximum representation size 19.

Proof. Figures 3 and 4 show the representation of the full-adder and half-adders
that occur in btor-multipliers that maximize the NSS proof size. Furthermore
the induced co-factors in AMulet are shown. We simply count the number of
monomials in the polynomials and use the definition of proof (representation)
size, cf. Defs. 6 and 7 to yield the desired results.

Lemma 2. The degree of an NSS proof for a full- or half-adder is 3.

Proof. It can be seen in Figs. 3 and 4 that multiplying each of the gate polyno-
mials by the corresponding co-factor yields degree at most 3 in Z[X]/〈B(X)〉.

We use the full- and half-adder specifications to derive a concise NSS proof.
That is, we want to find co-factors, such that we are able to express the speci-
fication L cf. Eqn. 1 as a linear combination of the output polynomials, adder
specifications and the polynomials that represent partial products.

It is easy to see that all the output polynomials, i.e., −si + s′k or −si− s′k + 1
need to be multiplied by the corresponding constant 2i, because neither the
internal adder polynomials nor the polynomials representing partial products
contain any output variable si of the multiplier. Furthermore, since all adder
specifications are linear, we multiply these polynomials by constants to cancel
output variables of an adder that are input to another adder. For example,



the multiplier of Fig. 2 induces the polynomials −2c′11 − s′11 + c′7 + p33 + c′10,
−2c′10 − s′10 + s′7 + p23 + c′9. We multiply the first polynomial by two to cancel
the monomials containing c′10. It follows by the same arguments that we only
need to multiply the polynomials −pij +aibj by constants to cancel the variables
pij . Using these observations and the following lemmas that are derived in [26]
we are able to derive quadratic bounds for the proof (representation) size of
btor-multipliers in Thm. 1 and Thm. 2.

Lemma 3 (Lemma 2 in [26]). Let C be a btor-multiplier of input bit-width n.
Then C contains n half-adders and n2 − 2n full-adders.

Theorem 1. The proof size of n-bit btor-multipliers produced in AMulet is
bounded by 63n2 − 93n.

Proof. Using Lemma 3, we derive that the proof size for all full- and half-adder
specifications is at most 23n+61n2−122n = 61n2−99n. These specifications are
only multiplied by constants during reduction, thus reduction has no effect on the
proof size. The 2n polynomials representing the circuit outputs are multiplied
by constants, thus each polynomial contributes at most 3 monomials. Each of
the n2 polynomials representing partial products is also multiplied by a constant,
adding 2 monomials to the proof size. Collecting the results leads to a proof size
of 61n2 − 99n+ 6n+ 2n2 = 63n2 − 93n.

Theorem 2. The proof representation size of n-bit btor-multipliers produced in
AMulet is bounded by 48n2 − 63n.

Proof. Using Lemma 3 and multiplying the co-factors by appropriate constants
we derive that the proof representation size for all full- and half-adder specifica-
tions is at most 19n+45n2−90n = 45n2−71n. The 2n polynomials representing
the circuit outputs are multiplied by constants. Thus for each of the 2n products
we derive a representation size 4. Each of the n2 polynomials representing par-
tial products is also multiplied by a constant, adding 3 monomials to the proof
representation size. Collecting the results leads to a proof representation size of
45n2 − 71n+ 8n+ 3n2 = 48n2 − 63n.

Theorem 3. The degree of the NSS proof of n-bit btor-multipliers is 3.

Proof. It follows from Lemma 2 that the degree of the NSS proof for an adder
specification is 3. This linear adder specification is only multiplied by constants
in the NSS proof for btor-multipliers. Furthermore, the degree of the output
polynomials is 1 and the degree of the polynomials representing the partial
products is 2, and both are multiplied only by constant factors in the NSS proof.
Thus the maximum degree of a polynomial product in the NSS is 3.

Figure 5 shows the proof (representation) size together with the derived
bounds of Thm. 1 and Thm. 2 for btor-multipliers with an input bit-width n in
[4, 128]. The absolute error of the bounds can be seen in Fig. 6, which empirically
indicates that the difference between the upper bound and the real proof size is
in O(n), giving us a precise bound on the coefficient of the quadratic terms.



20 40 60 80 100 120
Bit-width

0

200000

400000

600000

800000

1000000

Pr
oo

f s
ize

63x^2 - 93x
True proof size

20 40 60 80 100 120
Bit-width

0

200000

400000

600000

800000

1000000

Pr
oo

f r
ep

re
se

nt
ati

on
 si

ze

48x^2 - 63x
True proof representation size

Fig. 5: Proof size (left) and proof representation size (right) for btor-multipliers.

20 40 60 80 100 120
Bit-width

0

200

400

600

800

1000

Pr
ed

ict
io

n 
- t

ru
e v

alu
e

Size
Representation size

10 20 30 40 50 60
Bit-width

100

101

102

103

104

105

106

M
etr

ics
150x^2 
True proof size
90x^2 
True proof representation size
2log(n) 
True degree

Fig. 6: Absolute error of the estimated bounds for proof (representation) size
(left). Empirical evaluation of proof metrics for bp-wt-rc–multipliers (right).

The second multiplier architecture we consider are the complex bp-wt-rc-
multipliers that are part of the AOKI benchmarks [21]. These benchmarks only
scale up to input bit-width 64. The bp-wt-rc–multipliers use a Booth encoding
[36] to generate the partial products, which are then accumulated using a Wallace-
tree. The final-stage adder is a ripple-carry adder. The abbreviations of these
components “Booth encoding” – “Wallace-tree” – “ripple-carry adder” give this
architecture its name. Due to their irregular structure we only give empirical
evidence for the proof metrics, which can be seen in the right side of Fig. 6.

Proposition 1. Let C be a bp-wt-rc–multiplier of input bit-width n. The degree
of the NSS proof is in O(log(n)). The proof (representation) size is in O(n2).

5 Proof Checking

We validate the correctness of the generated NSS proofs by checking whether∑l
i=1 qipi = L ∈ Z[X]/〈B(X)〉 for pi ∈ G(C), qi ∈ Z[X]/〈B(X)〉. This sounds

rather straightforward as theoretically we only need to multiply the original
constraints pi by the co-factors qi and calculate the sum of the products. However,
we will discuss in this section that depending on the implementation the time
and maximum amount of memory that is allocated varies by orders of magnitude.



We implemented an NSS proof checker, called Nuss-Checker in C. It con-
sists of approximately 1800 lines of code and is published 1 as open source under
the MIT license. Nuss-Checker reads three input files <input>, <cofact>, and
<target>. The file <input> contains the original gate constraints pi, <cofact>
contains the corresponding co-factors qi in the same order. Nuss-Checker
reads the files <input> and <cofact>, generates the products and then verifies
that the sum of the products is equal to the polynomial given in <target>.

The polynomials in Nuss-Checker are internally stored as ordered linked
lists of monomials. The coefficients are represented using the GMP library and
the terms are ordered linked lists of variables. All internally allocated terms are
shared using a hash table. We already discussed in [23] that the variable ordering
has an enormous effect on the memory usage of the tool, since different variable
orderings induce different terms. In the default mode Nuss-Checker orders
the variables by their name using the function strcmp, as this minimized memory
usage for our application [23]. Nuss-Checker furthermore supports to use the
same variable ordering as in the given files. That is, whenever a new variable is
parsed we assign an increasing numerical level value and sort according to this
value. Both orderings strcmp and level can be applied in reverse order too.

Nuss-Checker generates the products on the fly. That is, we parse both
files <input> and <cofact> simultaneously, read two polynomials qi and pi from
each file and calculate the product qipi.

The polynomial arithmetic needed for multiplication and addition is imple-
mented from scratch, because in the default setting we always calculate modulo
the ideal 〈B(X)〉. General algorithms for polynomial arithmetic need to take
exponent arithmetic over Z into account [38], which is not the case in our set-
ting. Furthermore, in our previous work on PAC [37] we used modern computer
algebra systems, Mathematica [41] and Singular [12], for proof checking, which
turned out to be much slower than our own implemented algorithms.

Addition of two polynomials is implemented by pushing the monomials of
both polynomials on a stack, which is then sorted (using Quicksort) according
to the fixed term ordering and monomials with equal terms are merged to yield
the final sum. Multiplication is implemented in a similar way.

Since addition of polynomials in Z[X] is associative, we are able to derive
different addition schemes. We experimented with four different addition patterns,
which are depicted in Fig. 7 for adding six polynomials. The subscript i of “+i”
shows the order of the addition operation.

If we sum up all polynomials at once, we do not generate the intermediate
addition results. Instead we push all monomials of the l products piqi onto one
big stack. Afterwards, the monomials on the stack are sorted and merged, which
corresponds to one big addition. In this addition scheme we do not compute
any intermediate summands, which makes the algorithm very fast, because we
sort the stack only once. However, all occurring monomials of the products
are pushed on the stack and stored until the final sorting and merging, which
increases the memory usage of Nuss-Checker.

1 http://fmv.jku.at/nussproofs

http://fmv.jku.at/nussproofs


+1

p1 p2 p3 p4 p5 p6

(a) Adding all polynomials at once

+5

+4

+3

+2

+1

p1 p2 p3 p4 p5 p6

(b) Addition in sequence

+5

+4

+1

p1 p2

+2

p3 p4

+3

p5 p6

(c) Tree structure, breadth first

+5

+3

+1

p1 p2

+2

p3 p4

+4

p5 p6

(d) Tree structure, depth first

Fig. 7: Addition schemes of 6 polynomials.

If we add up in sequence, we only store one polynomial in the memory, and
always add the lastest product piqi. This allows for monomials to cancel, which
helps to reduce the memory usage. On the other hand, in our application the
target polynomial L contains n2 partial products that that lead to intermediate
summands of quadratic size, which slows down the checking time.

If we add up in a tree structure with breadth first, we add two consecutive
products of the NSS proof and store the resulting sum. After parsing the proof, we
have l

2 polynomials on a stack. We repeatedly iterate over the stack and always
sum up two consecutive polynomials, until only one polynomial is left. This has
the effect that we do not collect and carry along the n2 partial products. However,
the memory usage increases, because we store l

2 polynomials simultaneously.

In the addition scheme, where we use a tree structure and sum up depth first,
we develop the tree on-the-fly by always adding two polynomials of the same
layer as soon as possible. It may be necessary to sum up remaining intermediate
polynomials that are elements of different layers, as can be seen in Fig. 7. Similar
to using a tree structure with breadth first addition, we do not collect and
carry along the partial products. Furthermore, we always store at most dlog(l)e
polynomials in the memory, as a binary tree with l leafs has height dlog(l)e and
we never have more polynomials than layers in the memory.

We apply the presented addition schemes on btor-multipliers, cf. Sect. 4 and
it can be seen in Fig. 8 that the results compare favorably to our conjectures
of checking time and memory usage for each addition scheme. However, Nuss-
Checker supports all presented options for addition, with adding up in binary
tree, depth first set as default, because for different applications, using other
addition schemes may be more beneficial.



0 20000 40000 60000 80000 100000 120000
AIG size

10 2

10 1

100

101

102
Ti

m
e i

n 
se

c

all at once
sequence
binary tree, breadth first
binary tree, depth first

0 20000 40000 60000 80000 100000 120000
AIG size

0

20

40

60

80

100

120

M
em

or
y 

us
ag

e i
n 

M
B

all at once
sequence
binary tree, breadth first
binary tree, depth first

Fig. 8: Time (left) and memory usage (right) of addition schemes.

tree, depth first tree, breadth first all at once
2

3

4

5

6

Ti
m

e i
n 

se
c

tree, depth first tree, breadth first all at once

105

110

115

120

125

130

135

M
em

or
y 

us
ag

e i
n 

M
B

Fig. 9: Checking time (left) and memory usage (right) of shuffled NSS proofs.

For example, we shuffled the order of the polynomials in the NSS proof of
128-bit btor-multipliers 200 times and report the box-plots of the checking time
and memory usage in Fig. 9. Since “adding up in sequence” always exceeded
the time limit of 300 seconds, we omit its box-plot. It can be seen that the
fastest addition scheme is now “all at once”. However, the “tree based, depth
first” approach still has the smallest memory usage.

6 Evaluation

In this section we provide experimental results for generating and checking NSS
proofs for multiplier verification and we aim to provide a comprehensive compar-
ison between PAC and NSS proofs for the selected multiplier architectures.

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with
turbo-mode disabled) with a memory limit of 128 GB. The time is listed in
rounded seconds (wall-clock time). The wall-clock time is measured from starting
the tools until they are finished. Source code, benchmarks and experimental data
are available at http://fmv.jku.at/nussproofs.

In our experiments we consider the simple btor-multipliers with an input bit-
width n in [4, 128] and the complex bp-wt-rc–multipliers with an input bit-width
n in [4, 64]. These architectures are already discussed in detail in Sect. 4.

http://fmv.jku.at/nussproofs


0 25000 50000 75000 100000 125000
AIG size

0

2

4

6

8

10

12

14
Ti

m
e i

n 
se

c
Nullstellensatz
PAC

0 10000 20000 30000
AIG size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e i
n 

se
c

Nullstellensatz
PAC

Fig. 10: Proof generation time for btor (left) and bp-wt-rc (right) multipliers.

More complex multipliers include GP adders [36]. However, in our verification
approach [24] these GP adders are replaced by ripple-carry adders and only the
rewritten multiplier is verified using computer algebra. Thus it suffices to consider
complex multipliers that include a ripple-carry adder in this paper.

For both architectures we produce PAC proofs using AMulet as described
in [23, 26], which are checked using our proof checker Pacheck. We generate
NSS proofs as described in Sect. 3 and check these proofs using the default
configurations of Nuss-Checker.

The results are depicted in Figs. 10–13, where we compare the proof genera-
tion and checking time as well as the size of the proof files and the memory usage
of the proof checkers. In all figures we represent the measurements in terms of
the size of the input AIG, i.e., the number of circuit constraints, because the
number of gates in these multipliers is quadratic in the bit-width n.

Figure 10 shows the time needed to generate the NSS and PAC proofs in
AMulet. It can be seen that for btor-multipliers the generation time of PAC
proofs is around 30% slower than for NSS proofs. For bp-wt-rc–multipliers PAC
proofs are produced slightly faster than NSS proofs.

The size of the proof files (in megabyte) is shown in Fig. 11. Depending on
the multiplier architecture the size of the NSS proof file is 5–10 times smaller
than the size of the PAC proof. This result is actually expected as the PAC proof
includes all intermediate steps and results of generating and adding the products.
In the NSS proof file we only store the co-factors without any intermediate steps.

Figure 12 depicts that NSS proofs can be checked faster than the correspond-
ing PAC proofs. In fact, even for a btor-multiplier with input bit-width 128, where
the AIG contains more than 129 000 nodes, checking the NSS proof takes around
1 second and is four times faster than checking the PAC proof. We observed
that the proportion between multiplication and addition in Nuss-Checker
is around 1:1.7, e.g. for 128-bit btor-multipliers 0.25 seconds are used by the
multiplication function and 0.4 seconds are used by the addition operation.



0 25000 50000 75000 100000 125000
AIG size

0

20

40

60

80

100

120

140

Si
ze

 o
f p

ro
of

 fi
le 

in
 M

B
Nullstellensatz
PAC

0 10000 20000 30000
AIG size

0

5

10

15

20

Si
ze

 o
f p

ro
of

 fi
le 

in
 M

B

Nullstellensatz
PAC

Fig. 11: Size of the proof files for btor (left) and bp-wt-rc (right) multipliers.

Last, we compare the memory usage of Pacheck and Nuss-Checker, i.e.,
the maximum amount of memory that is allocated during proof checking and it
can be seen in Fig. 13 that NSS proofs need less than a third of the memory.

The AOKI benchmarks contain 192 different multiplier architectures, 168
of which can be successfully verified using AMulet. We compare the proof
generation and checking time of PAC and NSS proofs for these 168 multipliers
in Fig. 14. We fixed the input bit-width of all multipliers to 64. It can be seen
that for multipliers that use Booth encoding to generate the partial products the
generation time of NSS proofs is slightly slower than for PAC proofs. However,
checking the NSS proof is almost always faster than checking PAC proofs.

7 Conclusion

In this paper we elaborated whether concise Nullstellensatz proofs can be gen-
erated to validate the results of multiplier verification using computer algebra.
We discussed how Nullstellensatz proofs are developed as by-product in our ver-
ification tool AMulet. Our experiments showed that we are able to produce
compact Nullstellensatz proofs that are faster to check than proof certificates
based on the polynomial calculus. For simple array multipliers we formally de-
rived quadratic bounds on the proof size for Nullstellensatz proofs. Furthermore,
we presented our Nullstellensatz proof checker Nuss-Checker and discussed
several design decisions that allow efficient proof checking.

In the future we want to further investigate the connection between polyno-
mial calculus and Nullstellensatz for multiplier verification and want to derive
possibilities to convert DRUP proofs to Nullstellensatzproofs, similar to con-
verting DRUP proofs into PAC proofs as in [25]. Another intriguing research
direction is to develop techniques that allow production of smaller Nullstellensatz
proofs and connect it to SAT solving [24]. More general problems beyond the
Boolean case may be also of interest [39].



0 25000 50000 75000 100000 125000
AIG size

0

1

2

3

4
Ti

m
e i

n 
se

c
Nullstellensatz
PAC

0 10000 20000 30000
AIG size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e i
n 

se
c

Nullstellensatz
PAC

Fig. 12: Proof checking time for btor (left) and bp-wt-rc (right) multipliers.

References

1. A. Atserias and J. Ochremiak. Proof complexity meets algebra. ACM Trans.
Comput. Log., 20(1):1:1–1:46, 2019.

2. P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative
complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.

3. P. Beame, R. Impagliazzo, J. Kraj́ıcek, T. Pitassi, and P. Pudlák. Lower Bounds
on Hilbert’s Nullstellensatz and Propositional Proofs. In Proc. London Math.
Society, volume s3-73, pages 1–26, 1996.

4. T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases, volume 141 of Graduate
texts in mathematics. Springer, 1993.

5. C. Bright, I. Kotsireas, and V. Ganesh. Applying Computer Algebra Systems and
SAT Solvers to the Williamson Conjecture. J. Symb. Comput., 2019. In press.

6. C. Bright, I. Kotsireas, and V. Ganesh. SAT Solvers and Computer Algebra
Systems: A Powerful Combination for Mathematics. CoRR, abs/1907.04408, 2019.

7. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University
of Innsbruck, 1965.

8. D. Choo, M. Soos, K. M. A. Chai, and K. S. Meel. Bosphorus: Bridging ANF
and CNF solvers. In DATE 2019, pages 468–473. IEEE, 2019.

9. M. J. Ciesielski, T. Su, A. Yasin, and C. Yu. Understanding Algebraic Rewriting
for Arithmetic Circuit Verification: a Bit-Flow Model. IEEE TCAD, pages 1–1,
2019. Early acces.

10. M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner Basis Algorithm
to Find Proofs of Unsatisfiability. In STOC 1996, pages 174–183. ACM, 1996.

11. L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, Jr., M. Kaufmann, and P. Schneider-
Kamp. Efficient Certified RAT Verification. In CADE-26, volume 10395 of LNCS,
pages 220–236. Springer, 2017.

12. W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-0 —
A computer algebra system for polynomial computations. http://www.singular.

uni-kl.de, 2016.
13. A. V. Gelder. Verifying RUP Proofs of Propositional Unsatisfiability. In ISAIM

2008, 2008.

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de


0 25000 50000 75000 100000 125000
AIG size

0

20

40

60

80
M

em
or

y 
us

ag
e i

n 
M

B
Nullstellensatz
PAC

0 10000 20000 30000
AIG size

0

5

10

15

20

25

30

M
em

or
y 

us
ag

e i
n 

M
B

Nullstellensatz
PAC

Fig. 13: Memory usage of checkers for btor (left) and bp-wt-rc (right) multipliers.

100 101

Generation time of NSS proofs in seconds

100

101

Ge
ne

ra
tio

n 
tim

e o
f P

AC
 p

ro
of

s i
n 

se
co

nd
s AND-gates

Booth encoding

100 101

Checking time of NSS proofs in seconds

100

101

Ch
ec

ki
ng

 ti
m

e o
f P

AC
 p

ro
of

s i
n 

se
co

nd
s AND-gates

Booth encoding

Fig. 14: Generation (left) and checking time (right) for 64-bit multipliers.

14. A. V. Gelder. Producing and verifying extremely large propositional refutations -
Have your cake and eat it too. Ann. Math. Artif. Intell., 65(4):329–372, 2012.

15. D. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Exponential lower bound for
static semi-algebraic proofs. In ICALP, volume 2380 of Lecture Notes in Computer
Science, pages 257–268. Springer, 2002.

16. M. J. H. Heule. Computing small unit-distance graphs with chromatic number 5.
CoRR, abs/1805.12181, 2018.

17. M. J. H. Heule and A. Biere. Proofs for Satisfiability Problems. In All about
Proofs, Proofs for All Workshop, APPA 2014, volume 55, pages 1–22. College
Publications, 2015.

18. M. J. H. Heule, W. A. H. Jr., and N. Wetzler. Trimming while Checking Clausal
Proofs. In FMCAD 2013, pages 181–188. IEEE, 2013.

19. M. J. H. Heule, M. Kauers, and M. Seidl. Local search for fast matrix multiplication.
In SAT 2019, volume 11628 of LNCS, pages 155–163. Springer, 2019.



20. M. J. H. Heule, M. Kauers, and M. Seidl. New ways to multiply 3 × 3-matrices.
CoRR, abs/1905.10192, 2019.

21. N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal Design of Arithmetic
Circuits Based on Arithmetic Description Language. IEICE Transactions, 89-
A(12):3500–3509, 2006.

22. R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds for the polynomial calculus
and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

23. D. Kaufmann. Formal Verification of Multiplier Circuits using Computer Algebra.
PhD thesis, Informatik, Johannes Kepler University Linz, 2020.

24. D. Kaufmann, A. Biere, and M. Kauers. Verifying Large Multipliers by Combining
SAT and Computer Algebra. In FMCAD 2019, pages 28–36. IEEE, 2019.

25. D. Kaufmann, A. Biere, and M. Kauers. From DRUP to PAC and back. In DATE
2020, pages 654–657. IEEE, 2020.

26. D. Kaufmann, A. Biere, and M. Kauers. SAT, Computer Algebra, Multipliers. In
Vampire 2018 and Vampire 2019, volume 71 of EPiC Series in Computing, pages
1–18. EasyChair, 2020.

27. D. Kaufmann, M. Fleury, and A. Biere. Pacheck and Pastèque, Checking Practical
Algebraic Calculus Proofs. In FMCAD 2020. IEEE, 2020. To appear.

28. A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust Boolean reason-
ing for equivalence checking and functional property verification. IEEE TCAD,
21(12):1377–1394, 2002.

29. J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner Basis Reductions for Formal
Verification of Galois Field Arithmetic Circuits. IEEE TCAD, 32(9):1409–1420,
2013.

30. A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: Clean your Polynomials
before Backward Rewriting to verify Million-gate Multipliers. In ICCAD 2018,
pages 129:1 – 129:8. ACM, 2018.

31. A. Mahzoon, D. Große, and R. Drechsler. RevSCA: Using Reverse Engineering to
Bring Light into Backward Rewriting for Big and Dirty Multipliers. In DAC 2019,
pages 185:1–185:6. ACM, 2019.

32. A. Mahzoon, D. Große, C. Scholl, and R. Drechsler. Towards formal verification of
optimized and industrial multipliers. In DATE 2020, pages 544–549. IEEE, 2020.

33. O. Meir, J. Nordström, R. Robere, and S. F. de Rezende. Nullstellensatz size-
degree trade-offs from reversible pebbling. ECCC, 137:18:1–18:16, 2019.

34. M. Miksa and J. Nordström. A Generalized Method for Proving Polynomial
Calculus Degree Lower Bounds. In Conference on Computational Complexity,
CCC 2015, volume 33 of LIPIcs, pages 467–487. Schloss Dagstuhl, 2015.

35. A. Niemetz, M. Preiner, C. Wolf, and A. Biere. Btor2 , BtorMC and Boolector
3.0. In CAV 2018, volume 10981 of LNCS, pages 587–595. Springer, 2018.

36. B. Parhami. Computer Arithmetic - Algorithms and Hardware designs. Oxford
University Press, 2000.

37. D. Ritirc, A. Biere, and M. Kauers. A Practical Polynomial Calculus for Arithmetic
Circuit Verification. In SC2 2018, pages 61–76. CEUR-WS, 2018.

38. D. S. Roche. What can (and can’t) we do with sparse polynomials? In ISSAC,
pages 25–30. ACM, 2018.

39. S. Saraf and I. Volkovich. Black-box identity testing of depth-4 multilinear circuits.
Combinatorica, 38(5):1205–1238, 2018.

40. M. Soos and K. S. Meel. BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In AAAI 2019, pages 1592–1599.
AAAI Press, 2019.

41. Wolfram Research, Inc. Mathematica, 2016. Version 10.4.


	Nullstellensatz-Proofs for Multiplier Verification

